Женский журнал Ladyblue

Какое преобразование энергии. Возможные схемы преобразования энергии

Современная наука объясняет существование электричества скоплениями зарядов противоположных знаков. В природе вырабатывается невероятное количество электричества. Силы трения в атмосфере создают огромные пространства из грозовых облаков. Между облаками, с поверхностью земли возникают напряжения в миллионы вольт. А несколько минут грозы с молниями эквивалентны по электрической мощности продолжительной работе большой электростанции.

Но молний может и не быть. Однако электроэнергия всё равно витает в пространстве между небом и землёй.

  • Очевидно, что напряжение это первый и основной параметр энергии электричества.

В природе существуют только медленно изменяющиеся и почти мгновенно исчезающие напряжения. Гроза постепенно набирает силу, зарядов от трения перемещающихся слоёв воздуха становится всё больше. Напряжение между облаками и поверхностью земли увеличивается.

Если движение воздушных масс в определённый момент прекратится, напряжение постепенно уменьшится. Если нет – разряд молнии моментально «обнулит» напряжение.

  • Очевидно, что электрический ток, который имеет вид молнии, является вторым параметром электрической энергии.

По мере развития науки люди научились моделировать атмосферные электрические процессы, придумав электростатическую, или как её называют иначе электрофорную машину:

Эта машина стала первым преобразователем механической энергии в электроэнергию. Однако преобразование это не удалось сделать обратимым. Хотя машина и была источником напряжения и тока, проблема состояла в том, что сделать дальнейшие преобразования электрической энергии не получалось. Но со временем наука выявила ещё одну причину возникновения электрических зарядов. Не только трение, но и магнитное поле оказалось способным создавать электричество.

Это открытие оказалось полностью определённым развитием технологий. Когда появились металлическая проволока и постоянный магнит, взаимодействие которых в природе не существует, стало возможным открытие электромагнитной индукции. При этом выяснилось, что получаемая энергия электричества напрямую связана со скоростью взаимного перемещения магнита и провода.

  • Очевидно, что частота является третьим параметром энергии электричества.

После открытия Фарадеем явления электромагнитной индукции были изобретены различные электрические машины, в том числе и преобразователи электрической энергии. Первыми из них стали трансформаторы , которые сделали возможной передачу энергии электричества по проводам на значительные расстояния. Оказалось, что переменное напряжение на концах обмотки катушки равномерно распределяется между её витками. На каждом витке получается одинаковое по величине напряжение.

Поэтому количество витков обмотки определит напряжение, которое можно использовать для питания новой электрической цепи. Выяснилось также и то, что дополнительный виток охватывающий сердечник катушки вне основной обмотки имеет на своих концах такое же напряжение, как и виток основной обмотки. Такие катушки, охватывающие общий магнитопровод, стали называть трансформаторами. Если все катушки при этом соединялись между собой в последовательную цепь, такое устройство назвали автотрансформатором.

Автотрансформатор при одинаковых параметрах преобразования электроэнергии оказывается эффективнее трансформатора, поскольку в нём существует электрическая связь между обмотками. Поэтому он может передать потребителю большую электрическую мощность. В трансформаторе между обмотками существует только электромагнитная связь.

Но эта особенность обеспечивает полную электрическую изоляцию обмоток друг от друга. По этой причине трансформаторы широко используются во всех электрических устройствах, питающихся от электрической сети для получения безопасного электропитания этих устройств. Трансформаторы позволяют изменять лишь напряжение и ток, оставляя их частоту без какого-либо изменения. В этом качестве они применяются до сих пор. А в дальних системах электроснабжения трансформаторы достигли огромных размеров. Один из таких агрегатов показан на изображении ниже:

Но после появления трансформаторов проявилась ещё одна возможность преобразования электроэнергии.

Катушки

Оказалось, что любая катушка запасает энергию в электромагнитном поле. Оно существует некоторое время после того, как по обмотке катушки перестаёт течь электроток. А на концах обмотки катушки в течение этого времени продолжает существовать напряжение. Такое явление стали называть как ЭДС самоиндукции. Выяснилось также и то, что величина ЭДС самоиндукции зависит от скорости отключения электротока в катушке.

Чем быстрее уменьшается ток, тем больше напряжение на концах обмотки. Такой преобразователь электроэнергии получил своё название по фамилии своего изобретателя и стал называться «катушкой Румкорфа», изображение которой показано ниже слева. На таком же принципе работает классическая система зажигания автомобильного бензинового двигателя.

Однако преобразовать частоту напряжения и тока длительное время можно было только при помощи вращения. Синхронный двигатель , который вращался с частотой, определяемой частотой питающего напряжения, вращал генератор. Для увеличения частоты можно было либо использовать повышающий обороты редуктор, либо увеличивать число полюсов генератора, либо и то и другое вместе. Аналогично решалась и проблема получения выпрямленного тока. Механические контакты, например, коллектора двигателя пропускали только одну половину периода тока. Эти импульсы поступали в общую электрическую цепь, и таким образом получался выпрямленный ток обоих полупериодов.

Определяющий вклад в развитие преобразования электроэнергии внесли электронные приборы. Они позволили создавать выпрямители и преобразователи частоты без подвижных частей, обеспечивая параметры электроэнергии недостижимые для устройств, созданных на механических принципах. Стало возможным создание мощных высокочастотных генераторов, именуемых инверторами. Увеличение частоты позволило в несколько раз уменьшить размеры трансформаторов.

Инверторы

Инверторы получили дальнейшее развитие с появлением мощных высоковольтных полупроводниковых приборов – транзисторов и тиристоров . С их появлением преобразование электроэнергии на высокой частоте охватило почти все устройства с источниками вторичного электропитания. Инверторные схемы стали широко применяться для электронных балластов газоразрядных ламп. При этом достигалось более высокое качество света при значительной экономии электроэнергии.

Наиболее весомым моментом в развитии преобразования электроэнергии стали инверторы и выпрямители для высоковольтных линий электропередачи. Такие схемы дальнего электроснабжения начали применяться достаточно давно с появлением ртутных вентилей – мощных специализированных электровакуумных приборов.

Затем они были вытеснены более эффективными тиристорами и транзисторами. Полупроводниковые преобразователи электроэнергии позволяют обеспечить передачу электрической мощности в 3,15 гигаватт/час на расстояние 2400 км в современной системе электроснабжения в Бразилии. За такими системами передачи электроэнергии будущее. ЛЭП работающие на постоянном токе лишены реактивного сопротивления и потерь электроэнергии, связанных с переменным напряжением и током.

В них нет и других процессов и явлений, очень мешающих совместной работе нескольких электрогенерирующих и передающих систем в единой схеме электроснабжения. Но трение и электромагнетизм не единственные процессы, которые используются для преобразования электроэнергии. Примерно в те же годы открытия явления электромагнитной индукции был обнаружен пьезоэлектрический эффект.

В результате нашлась группа минералов, а впоследствии были искусственно созданы материалы с пьезоэлектрическими свойствами. Эти свойства заключаются в преобразовании механического воздействия, приложенного к образцу пьезоэлектрического материала, в электрические импульсы. Но обратное преобразование электрических импульсов в механические деформации образца также возможно. На основе таких образцов можно изготовить трансформатор без обмоток и магнитных полей в сердечнике и вне его.

Такой трансформатор будет увеличивать приложенное напряжение во много раз при минимальных размерах и весе. Это будет просто керамическая пластина с припаянными проводками.

При этом получаемая мощность не будет большой. Но выигрыш в размерах и себестоимости по сравнению с электромагнитным трансформатором будет существенной. Такие пьезоэлектрические трансформаторы применяются в источниках вторичного электропитания. Также все современные курильщики пользуются зажигалками, в которых искра создаётся миниатюрным пьезоэлектрическим трансформатором.

Дальнейшее развитие преобразователей электроэнергии это битва за увеличение частоты напряжения и тока. Этот процесс связан с необходимостью создания новых полупроводниковых приборов и материалов. В сочинениях некоторых писателей фантастов упоминается энергетический луч, используемый вместо ЛЭП . Возможно, их пророчества таки сбудутся.

3.1 Энергия и её виды

3.2 Способы получения и преобразования энергии

3.3 Электрические и тепловые нагрузки и способы их регулирования

3.4 Прямое преобразование солнечной энергии в тепловую и электрическую

3.5 Ветроэнергетика

3.6 Гидроэнергетика

3.7 Биоэнергетика

3.8 Транспортирование тепловой и электрической энергии

3.8.1 Транспортирование тепловой энергии

3.8.2 Транспортирование электрической энергии

3.9 Энергетическое хозяйство промышленных предприятий

3.1 Энергия и её виды

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа - это энергия в действии.

Во всех механизмах при совершении работы энергия переходит из одного вида в другой. Но при этом нельзя получить энергии одного вида больше, чем другого, при любых ее превращениях, т. к. это противоречит закону сохранения энергии.

Различают следующие виды энергии: механическая; электрическая; тепловая; магнитная; атомная.

Электрическая энергия является одним из совершенных видов энергии. Её широкое использование обусловлено следующими факторами:

Получением в больших количествах вблизи месторождения ресурсов и водных источников;

Возможностью транспортировки на дальние расстояния с относительно небольшими потерями;

Способностью трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

Отсутствием загрязнения окружающей среды;

Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Преобразование первичной энергии во вторичную, в частности, в электрическую, осуществляется на станциях, которые в своем названии содержат указания на то, какой вид первичной энергии преобразуется на них в электрическую:

На тепловой электрической станции (ТЭС) - тепловая;

Гидроэлектростанции (ГЭС) - механическая (энергия движения воды);

Гидроаккумулирующей станции (ГАЭС) - механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

Атомной электростанции (АЭС) - атомная (энергия ядерного топлива);

Приливной электростанции (ПЭС) - приливов.

В Республике Беларусь более 95 % энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

Конденсационные тепловые электростанции (КЭС), предназначенные для выработки только электрической энергии;

Теплоэлектроцентрали (ТЭЦ), на которых осуществляется комбинированное производство электрической и тепловой энергии.

3.2 Способы получения и преобразования энергии

Тепловая электростанция включает комплект оборудования, в котором внутренняя химическая энергия топлива (твердого, жидкого или газообразного) превращается в тепловую энергию воды и пара, преобразующуюся в механическую энергию вращения, которая и вырабатывает электрическую энергию. Схема выработки электроэнергии на ТЭС представлена на рисунке 6.

Как видно из представленной схемы, поступающее со склада (С) в парогенератор (ПГ) топливо при сжигании выделяет тепловую энергию, которая, нагревая подведенную с водозабора (ВЗ) воду, преобразует ее в энергию водяного пара с температурой 550 °С. В турбине (Т) энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор (Г), который превращает ее в электрическую. В конденсаторе пара (К) отработанный пар с температурой 123 …125 °С отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса (Н) в виде конденсата вновь подается в котел-парогенератор.

Рисунок 6 - Схема работы ТЭС

Схема ТЭЦ отличается от ТЭС тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.

Котельная установка представляет собой комплекс устройств для получения водяного пара под давлением или горячей воды. Она состоит из котлоагрегата и вспомогательного оборудования, газо- и воздухопроводов, трубопроводов пара и воды с арматурой, тягодутьевых устройств и др.

Районные , или производственные котельные предназначены для централизованного теплоснабжения жилищно-коммунального хозяйства или самого предприятия. С вводом в действие ТЭЦ некоторые из них остались без дела и могут использоваться как резервные и пиковые, и тогда их называют резервно-пиковыми.

Газотурбинная установка - это двигатель, в лопаточном аппарате которого потенциальная энергия газа преобразуется в кинетическую энергию и затем частично превращается в механическую работу, которая преобразуется в электрическую энергию.

Рисунок 7 - Схема газотурбинной установки с подводом тепловой энергии при = с onst

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 - топливный насос; 5 - камера сгорания

В простейшей газотурбинной установке постоянного горения (рисунок 7) воздух, сжатый до некоторого давления в компрессоре 1, поступает в камеру сгорания 5, где его температура повышается за счет сжигания топлива, подающего топливным насосом 4, при постоянном давлении. Продукты сгорания под давлением и при высокой температуре подводятся к турбине 2, в которой совершается работа расширения газа. При этом давление и температура падают. Далее продукты сгорания выбрасываются в атмосферу.

Парогазовая установка - это турбинная теплосиловая установка, в тепловом цикле которой используются два рабочих тела - водяной пар и дымовые газы, поступающие из котлоагрегата.

Поступающий из атмосферы в компрессор 1 (рисунок 8) воздух сжимается с повышением температуры и подается в камеру сгорания 5, в которую при помощи топливного насоса и впрыскивается топливо. В камере сгорания 5 происходит горение топлива, а образующиеся газы поступают в газовую турбину 2, где и совершается работа.

Рисунок 8 - Схема парогазовой установки

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 – топ-ливный насос; 5 - камера сгорания; 6 - подогреватель; 7 - котел; 8 - паровая турбина; 9 - конденсатор водяного пара; 10 - питательный насос

Отработанные газы с температурой 350 °С и пониженным давлением поступают в подогреватель 6, где отдают часть теплоты для подогрева питательной воды, поступающей в котел 7 и, охладившись при этом, сбрасываются в атмосферу. Питательная вода используется в котле для получения пара, который поступает в паровую турбину 8 с температурой

540 °С. В ней пар расширяется, производя техническую работу. Отработанный в турбине пар поступает в конденсатор 9, в котором конденсируется, а образовавшийся конденсат при помощи насоса 10 направляется сначала в подогреватель 6, где воспринимает тепло отработавших в газовой турбине газов, а затем - в паровой котел 7. Расходы пара и газа подбираются таким образом, чтобы вода воспринимала максимальное количество теплоты газов. Термический коэффициент полезного действия установок - свыше 60 %.

О том, насколько эффективно внедрение паротурбинных установок, показывает внедрение в Витебском производственном объединении «Витязь» двух паротурбинных установок, которые способны вырабатывать 1500 кВт электроэнергии (по 750 кВт каждая) и ежемесячно экономить до 30 тыс. долларов на покупку энергии. Срок окупаемости проекта - чуть больше года.

Гидроэлектростанция представляет собой комплекс гидротехнических сооружений и энергетического оборудования, посредством которых энергия водных потоков или расположенных на относительно более высоких уровнях водоёмов преобразуется в электрическую энергию.

Технологический процесс получения электроэнергии на ГЭС включает:

Создание разных уровней воды в верхнем и нижнем бьефах;

Превращение энергии потока воды в энергию вращения вала гидравлической турбины;

Превращение гидрогенератором энергии вращения в энергию электрического тока.

Гидроаккумулирующая электростанция представляет собой такую гидроэлектростанцию, в которой поступление воды в водоем верхнего бьефа обеспечивается искусственно, посредством насосов, работающих за счет электроэнергии из системы. Она оборудована кроме турбин насосами (помпами) или только турбинами, которые могут работать в режиме помп (обратные турбины) для подъема воды в часы малых нагрузок в энергосистеме с нижнего бьефа в водохранилище верхнего бьефа за счет подключения к энергосистеме. При больших нагрузках ГАЭС работают как обычные ГЭС.

Тепловые схемы АЭС зависят от типа реактора; вида теплоносителя; состава оборудования и могут быть одно-, двух-, и трехконтурными.

Схема выработки электроэнергии на одноконтурной АЭС представлена па рисунке 9. Пар вырабатывается непосредственно в реакторе и поступает в паровую турбину. Отработанный пар конденсируется в конденсаторе, и конденсат подается насосом в реактор. Схема проста, экономична. Однако пар (рабочее тело) на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

Рисунок 9 - Тепловая схема простейшей одноконтурной атомной электростанции

1 - атомный реактор; 2 - турбина; 3 - электрогенератор; 4- конденсатор водяных паров; 5 - питательный насос

В двухконтурных схемах производства электроэнергии на АЭС имеется два самостоятельных контура (рисунок 10) - теплоносителя и рабочего тела. Общее оборудование у них - парогенератор, в котором нагретый в реакторе теплоноситель отдает свою теплоту рабочему телу и при помощи циркуляционного насоса возвращается в реактор.

Рисунок 10 - Тепловая схема простейшей двухконтурной атомной электростанции

1 - атомный реактор; 2 - теплообменник-парогенератор; 3 - главный циркуляционный насос; 4 - турбина; 5 - электрогенератор; 6 - конденсатор водяных паров; 7 - питательный насос

Давление в первом контуре (контуре теплоносителя) значительно выше, чем во втором. Полученный в теплогенераторе пар подается в турбину, совершает работу, затем конденсируется, и конденсат питательным насосом подается в парогенератор. Хотя парогенератор усложняет установку и уменьшает её экономичность, но препятствует радиоактивности во втором контуре.

В трехконтурной схеме теплоносителями первого контура служат жидкие металлы (например, натрий). Радиоактивный натрий из реактора поступает в теплообменник промежуточного контура с натрием, которому отдает теплоту и возвращается в реактор. Давление натрия во втором контуре выше, чем в первом, что исключает утечку радиоактивного натрия. В промежуточном втором контуре натрий отдает теплоту рабочему телу (воде) третьего контура. Образовавшийся пар поступает в турбину, совершает работу, конденсируется и поступает в парогенератор.

Трехконтурная схема требует больших затрат, но обеспечивает безопасную работу реактора.

Отличие ТЭС от АЭС состоит в том, что источником теплоты на ТЭС является паровой котел, в котором сжигается органическое топливо; на АЭС -ядерный реактор, теплота в котором выделяется делением ядерного топлива, обладающего высокой теплотворной способностью (в миллионы раз выше, чем органическое топливо). Один грамм урана содержит 2,6 10 ядер, при делении которых выделяется 2000 кВт ч энергии. Для получения такого же количества энергии нужно сжечь более 2000 кг угля.

Однако при эксплуатации АЭС образуется большое количество радиоактивных веществ в топливе, теплоносителе, конструкционных материалах. Поэтому АЭС является источником радиационной опасности для обслуживающего персонала и проживающего вблизи населения, что повышает требование к надежности и безопасности её эксплуатации.

Теплоэлектрацентраль (ТЭЦ) - это тепловая электростанция, выраба-тывающая не только электрическую энергию, но и тепло, отпускаемое потре-бителям в виде пара и горячей воды для коммунально-бытового потребления. При такой комбинированной выработке тепловой и электрической энергии в тепловую сеть отдается главным образом теплота отработавшего в турбинах пара (или газа), что приводит к снижению расхода топлива на 25-30 % по сравнению с раздельной выработкой энергии на КЭС или ГРЭС (государственные районные электростанции) и теплоты в районных котельных.

Непосредственное использование природных источников энергии.

Преобразование с использованием паровой машины

Преобразование с использованием электроэнергии


Преобразование энергии в промышленной энергетике
Как было сказано выше производство электроэнергии является отдельной отраслью промышленности. В настоящее время наибольшую долю электроэнергии производят на трех видах электростанций:

1. ГЭС (гидроэлектростанция)

2. ТЭС (теплоэлектростанция)

3. AЭС (атомная электростанция)

Рассмотрим преобразование энергии на этих видах электростанций:

ГЭС

ТЭЦ

При использование тепловой энергии пара в цепочки преобразования энергии появляется возможность использовать часть тепловой энергии для обогрева (показано пунктиром) или для нужд производства.

АЭС (с одноконтурным реактором)

Тепловой контур.

Основные понятия
Ранее мы рассмотрели виды энергии и возможности её преобразования из одного вида в другой, остановимся подробнее на тепловой энергии, поскольку она играет очень важную роль в процессах происходящих на АЭС.
Как было сказано ранее, тепловая энергия, это энергия хаотического движения молекул или атомов в жидкостях и газах и колебательного движения молекул или атомов в твердом теле. Чем выше скорость этого движения тем большей тепловой энергией обладает тело.
Все мы сталкиваемся в нашей повседневной жизни с процессами передачи тепловой энергии от одного тела к другому, (горячий чай нагревает стакан, радиатор отопления в квартире нагревает воздух и т. д.) исходя из определения тепловой энергии можно дать определение теплообмену.
Определение: Процесс передачи энергии в результате обмена хаотическим движением молекул, атомов или микрочастиц называетсятеплообменом .
Из житейского опыта известно, что тепловая энергия или тепло передается от более горячего тела к более холодному, и кажется вполне логичным принять за меру тепловой энергии температуру, однако это грубейшая ошибка. Температура тела является мерой способности к теплообмену с окружающими телами. Зная температуры двух тел мы можем сказать только о направлении теплообмена. Тело с большей температурой будет отдавать тепло и остывать, а тело с меньшей температурой принимать тепло и нагреваться, однако количество передаваемой энергии определить, исходя только из температуры, невозможно. За примером далеко ходить не надо: попробуйте налить равное количество кипятка в алюминиевую кружку и керамическую. Алюминий практически мгновенно нагреется, почти не остудив воду, а керамика будет нагреваться гораздо меньше и значительно дольше, а изначальная температура кипятка и в том и другом случае 100° С. Отсюда следует вывод: для нагрева на одинаковую температуры различных веществ необходимо различное количество тепловой энергии, каждое вещество обладает своей теплоемкостью
Определение: удельной теплоемкостью вещества называется количество энергии необходимое для нагрева одного килограмма данного вещества на один градус.

где: Q-энергия; С -теплоемкость; m -масса; dT-подогрев;


Способы теплообмена.
Как правило в промышленных энергоустановках процесс преобразования энергии источника в тепловую происходит в одном месте (котел для ТЭС, реактор для АЭС), а процесс преобразования тепловой энергии в механическую и далее в электрическую в другом, следовательно возникает проблема перемещения тепловой энергии в пространстве. Как можно передать тепловую энергию из одной точки пространства в другую?

Теплопроводность
Нагревая один конец металлической проволоки можно заметить, что температура повышается по всей длине, причем чем короче проволока, тем быстрее нагреется противоположная, не нагреваемая напрямую, часть. Нагревая проволоку с одной стороны мы заставляем атомы и электроны в месте нагрева колебаться сильнее, колеблющиеся атомы и электроны вовлекают в колебание соседние атомы и электроны, происходит распространение тепловой энергии в твердом теле, в нашем случае в металлической проволоке. Такой способ передачи тепловой энергии называется теплопроводностью.
Определение : Теплопроводность представляет собой процесс передачи теплоты в сплошной среде посредством хаотического движения микро частиц.
Количество теплоты передаваемое за счет теплопроводности зависит от физических свойств среды в которой происходит теплообмен. Каждое вещество обладает своим коэффициентом теплопроводности l (Металлический прут длинной около метра помещенный одним концом в огонь, невозможно будет удержать в голых руках, деревянная палка такой же формы сгорит больше чем на половину, прежде чем сколь нибудь значительно нагреется).
Чем больше разность температур dT между горячей и холодной точкой среды, тем большее количество тепла передается, в единицу времени. Чем больше площадь поперечного сечения тем большее количество тепла передается, в единицу времени.
Наверное каждый знает как вскипятить воду с помощью костра в деревянной посуде. Нужно бросать в воду раскаленные в огне камни. Нагретые камни сразу смачиваются водой и отдают ей свою теплоту. Процесс передачи тепла от камней к окружающей их воде похож на теплопроводность, но распределение тепловой энергии по объему воды носит другой характер.

Конвективный теплообмен
Рассмотрим, что происходит в объеме холодной воды когда горячие камни нагревают ее часть вокруг себя. Из физики известно, что тела нагреваясь расширяются, другими словам увеличивают свой объем, а поскольку масса остается постоянной, плотность снижается. Как гласит закон Архимеда тело с плотностью большей чем плотность жидкости погружается, а с меньшей всплывает. Тоже самое
можно сказать о нагретой жидкости, обладая меньшей плотностью, она начнет подниматься перемешиваясь с холодными слоями в верхней части сосуда, которые, в свою очередь, начнут опускаться, через некоторое время температура по всему объему станет одинаковой.
Определение: Конвективный теплообмен - перенос теплоты при перемешивании более нагретых частиц среды с менее нагретыми.
В примере, приведенном выше, движения было вызвано разностью плотностей горячих и холодных частей жидкости такая конвекция называется естественной или свободной. Если движение вызвано работой насоса или вентилятора, то конвекция называется вынужденной.
Конвективный теплообмен происходит в газах так же, как и в жидкостях.
Во многих современных АЭС отвод теплоты из реактора происходит путем принудительной прокачки воды, газа или жидкого металла через активную зону. Вещество, которое нагреваясь забирает теплоту от источника называется теплоносителем.

Теплообмен излучением
Опыты показывают, что теплообмен между телами возможен даже если они находятся в вакууме не соприкасаясь друг с другом. В этом случае виды теплообмена описанные выше не могут осуществляться. Как же происходит передача тепловой энергии в данном случае?
Нагретое тело испускает электромагнитные волны которые как известно могут распространятся в безвоздушном пространстве менее нагретое тело поглощает эти волны и нагревается.
Определение : Теплообмен излучением - это передача тепловой энергии с помощью электромагнитных волн.
В современных АЭС при нормальной работе теплообмен излучением пренебрежимо мал по сравнению с конвективным.

Тепловой контур
Рассмотрев способы возможные теплообмена, вернемся к вопросу о передаче тепловой энергии в условиях АЭС или ТЭС. Как известно, на работающих станциях процесс преобразования энергии источника в тепловую происходит непрерывно и в случае прекращения теплоотвода произойдет неизбежный перегрев установки. Следовательно на ряду с источником необходим потребитель тепловой энергии, который будет забирать тепло и либо преобразовывать его в другие формы энергии либо передавать его в другие системы. Передачу тепла от источника к потребителю осуществляется с помощью теплоносителя. На основании выше сказанного можно изобразить простейший тепловой контур, содержащий источник энергии, потребитель энергии, и тракты теплоносителя.

ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ДРУГИЕ ВИДЫ ЭНЕРГИИ В электрической цепи электрическая энергия одновремен получается в источнике и преобразуется в другой вид энерг; в приемнике. Тип приемника выбирают в соответствии с тре емым для практических целей видом неэлектрической энерг Рассмотрим принципы преобразования электрической эн гии в тепловую, световую и химическую; вопрос преобразо ния электрической энергии в механическую рассмотрен в § 10 Преобразование электрической энергии в тепловую Физический процесс преобразования электрической 3Heprf в тепловую рассмотрен в § 2.2. Выразим количество выделенной теплоты через напряжен: и ток. "потенциалов U, заряд перемещенных частиц Q = h. Ра3о° епгия электрического поля, затраченная на перемещение Ценных частиц, согласно (1.5), зар W0=UQ=UIt. ¦ Ра5ОТа сил электрического поля расходуется на нагревание L очника, так как никаких других проявлений этой работы Соблюдается. Поэтому энергию W3 можно считать равной тепловой энергии приемника: W„= W, = Ult. r этой формуле энергия выражена в джоулях. Согласно закону Ома [см. формулу (2.6)], U=IR, тогда W„ = I2Rt. Формула (3.10) является математическим выражением закона Ленца -Джоуля. Количество электрической энергии, преобразуемой в проводнике за единицу времени в тепловую энергию, пропорционально квадрату тока и электрическому Сопротивлению проводника. I Скорость преобразования электрической энергии в другой вид энергии в приемнике называется мощностью приемника: Рп= W„lt=UI. [ Эта формула справедлива для любого приемника независимо от вида энергии, который получается в результате ¦вреобразования. [ Если электрическая энергия полностью превращается в тепловую, то мощность приемника можно выразить через ток в(проводнике и его сопротивление: (3.12) В Явление преобразования в проводниках электрической энер-?Пг)И в тепловую широко используется в практике. На этом даинципе основано действие большинства электрических промышленных и бытовых нагревательных устройств. Преобразование электрической энергии в световую Ле>) "^РинЦип преобразования электрической энергии в тепловую Ни гакже в основе работы электрических ламп накаливания. Г > лампы, изготовленная из тугоплавкого металла При высокой температуре нити лампы часть энерг излучается в виде световой энергии, которая в общем пото энергии, излучаемой лампой, составляет менее 10%. Преобразование электрической энергии в химическую Аккумулятор при зарядке или электролитическая ван являются приемниками электрической энергии. ЭДС аккумулятора Ел при зарядке сохраняет то направление, что и при разрядке; ток же в аккумулято изменяет свое направление на обратное, так как он опреде ется не направлением ЭДС аккумулятора, а ЭДС Е внешнег источника питания (рис. 3.9). ЭДС аккумулятора Ел зарядке направлена против тока и потому называете противоЭДС. Перемещение заряженных частиц при зарядке аккумулято-осуществляется в результате действия электрического пол которое создается источником питания. Силы электрическог поля в любой момент времени уравновешиваются химически? (сторонними) силами, поэтому работа сил электрического по приходящаяся на единицу заряда, может быть приравнен противоЭДС Ел. Тогда энергия, израсходованная на зарядку, W„ = E,Q = EaIt, а мощность потребления электрической энергии Pn=WJt=EaI. (3.13 (3.14 Формулы, выражающие энергию и мощность при разряд* и зарядке аккумулятора, одинаковы. Однако нужно не забыва о физическом различии процессов: в первом случае аккумулят является источником, а во втором -приемником электрическ энергии. При преобразовании элек трической энергии в теплову сопротивление обусловлен соударениями частиц. Пр преобразовании электрическ энергии в химическую прот водействие току оказыва-сторонние силы. Этим объясняется различи выражений (3.11) и (3.14), к" торыми количественно опреде ляется скорость преобразова ния электрической энерг в другой вид энергии. Мощность электрического утюга 300 Вт при напряжении 120 В. Определить ток и сопротивление нагревательного элемента. Задача 3.10. Электродвигатель постоянного тока включен в сеть с напряжением 220 В. Механическая мощность на валу двигателя 8,4 кВт, КПД 84%. Определить электрическую мощность и ток двигателя. j Задача 3.11. На зарядку аккумулятора при токе /=4 А, напряжении на внешних зажимах источника U=30 В затрачивается время f = 6 ч. Определить запас энергии и ЭДС аккумулятора, если известно, что 10% энергии, израсходованной на зарядку, составляют потери в аккумуляторе и соединитель-ы* проводах. ЭДС аккумулятора и зарядный ток предполагаются при I «рядке неизменными.

https://pandia.ru/text/78/077/images/image003_160.gif" width="132" height="60">2010

УДК 621.314(075)

Рецензенты: заслуженный деятель науки и техники РФ, профессор кафедры «Эксплуатация энергооборудования и электрические машины» Саратовского государственного аграрного университета, д. т. н. ; коллектив кафедры «Электроснабжение» Ульяновского государственного технического университета (декан энергетического факультета, профессор)

Угаров, энергии: учеб. пособие / , . Под ред. д. т. н. ; ВолгГТУ, Волгоград, 2010. – 96 с.

Рассмотрены методы преобразования энергии и технические средства – преобразователи для их реализации. Приведены расчетные соотношения для ряда преобразователей энергии. В издании использованы материалы источников, приведенных в конце пособия, а также материалы лекций авторов, прочитанных для студентов по специальности «Электроснабжение промышленных предприятий» и направлениям «Электроэнергетика», «Электротехника».

Предназначено для студентов энергетических специальностей, обучающихся по специальности «Электроснабжение промышленных предприятий» и направлениям «Электроэнергетика», «Электротехника».

Ил. 32. Табл. 2. Библиогр.: 21 назв.

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

ISBN 0558-9 Ó Волгоградский

государственный

технический

Инновационная деятельность" href="/text/category/innovatcionnaya_deyatelmznostmz/" rel="bookmark">инновационной деятельностью в той или иной стране. Об этом свидетельствует опыт лучших нефтедобывающих фирм, освоивших за последние 25 лет несколько поколений новых технологий , и коренная модернизация заводов по переработке углеводородного сырья.

Основные энергоносители – нефть и газ – будут израсходованы в ближайшие десятилетия. Под разными предлогами их остатки пытаются присвоить себе развитые страны, которые израсходовали свои энергоресурсы и поэтому попали в энергетическую зависимость от стран третьего мира, не относящихся к так называемому “золотому миллиарду”. Сегодня вся энергетика этих стран практически обеспечивается импортными нефтью и газом. Запасы урановой руды, пригодной для обработки и использования в атомных реакторах, тоже могут быть исчерпаны в недалеком будущем, после нефти и газа.

В связи с этим актуальной проблемой является изыскание таких источников энергии, которые принципиально неисчерпаемы и не вносят дестабилизирующих факторов в окружающую среду. Другой актуальной проблемой является разработка и создание установок, способных преобразовывать энергию, содержащуюся в окружающей среде, включая космос, в такие виды, которые были бы пригодны для использования человечеством. Такие попытки уже известны: это энергия потоков воды, воздуха, солнечная энергия, энергия воды, приливов и отливов океана, внутреннего тепла Земли и др.

2. Виды энергий и принципы их преобразования

2.1. Классификация видов энергий

В современном научном представлении под энергией понимается общая мера различных форм движения материи. Для количественной характеристики качественно различных форм движения материи и соответствующих им взаимодействий условно вводят различные виды энергии: тепловую, механическую, ядерную, электромагнитную и др.

Различают первичную и вторичную энергии. Первичной называют энергию, непосредственно запасенную в природе: энергия топлива, ветра, тепло Земли и др. Энергия, получаемая после преобразования первичной энергии в специальных условиях, называемых энергетическими, считается вторичной (например, энергия пара, электрическая, горячей воды и т. д.).

Получение энергии необходимого вида происходит в процессе энергетического производства и осуществляется путем преобразования первичной энергии во вторичную.

Почти вся подлежащая использованию и дальнейшему преобразованию энергия сначала превращается в тепловую энергию в промышленных и отопительных печах, двигателях и механизмах, бытовых приборах (50 %), в котельных (10 %), котлах тепловых электростанций и реакторах атомных станций (40 %). Около полученной тепловой энергии используется без дальнейшего преобразования в другие виды энергии (в промышленных и отопительных печах, а также в виде пара, горячей воды и т. д.). Примерно часть полученной тепловой энергии идет на выработку электрической энергии, претерпев предварительное преобразование в механическую энергию в турбинных установках. Менее Электрический транспорт" href="/text/category/yelektricheskij_transport/" rel="bookmark">электрического транспорта , различного оборудования предприятий. Примечательно, что примерно шестая часть электрической энергии вновь преобразуется в тепловую.

Научно обоснованная классификация видов энергии составлена. В её основе лежит комплексный критерий, включающий виды материи, формы ее движения и виды взаимодействий.

Виды материи: атом, электрон, фотон, нейтрино и т. д.

Формы движения: механическая, электрическая, тепловая и т. д.

Виды взаимодействия: ядерное (сильное), электромагнитное, слабое (с участием нейтрино) и гравитационное (сверхслабое).

На основе комплексного критерия можно выделить следующие виды энергии:

1. Аннигиляционнная энергия – полная энергия системы, «вещество – антивещество», освобождающаяся в процессе их соединения и аннигиляции (взаимоуничтожения) в различных видах.

2. Ядерная энергия – энергия связи нейтронов и протонов в ядре, освобождающаяся в различных видах при делении тяжелых и синтезе легких ядер; в последнем случае ее называют “термооядерной”.

3. Химическая (логичнее – атомная) энергия – энергия системы из двух или более реагирующих между собой веществ. Эта энергия освобождается в результате перестройки электронных оболочек атомов и молекул при химических реакциях.

4. Гравистатическая энергия – потенциальная энергия ультраслабого взаимодействия всех тел, пропорциональная их массам. Практическое значение имеет энергия тела, которую она накапливает, преодолевая силу земного притяжения.

5. Электростатическая энергия – потенциальная энергия взаимодействия электрических зарядов, т. е. запас энергии электрически заряженного тела, накапливаемый в процессе преодоления им сил электрического поля.

6. Магнитостатическая энергия – потенциальная энергия взаимодействия “магнитных зарядов” или запас энергии, накапливаемый телом, способным преодолевать силу магнитного поля в процессе перемещения против направления действия этих сил. Источником магнитного поля может быть постоянный магнит, электрический ток.

7. Нейтриностатическая энергия – потенциальная энергия слабого взаимодействия “нейтринных зарядов” или запас энергии, накапливаемый в процессе преодоления сил β-поля – “нейтринного поля.” Вследствие огромной проникающей способности нейтрино накапливать энергию таким образом практически невозможно.

8. Упругостная энергия – потенциальная энергия механически упругого измененного тела (сжатая пружина, газ), освобождающаяся при снятии нагрузки чаще всего в виде механической энергии.

9. Тепловая энергия – часть энергии теплового движения частиц тел, которая освобождается при наличии разности температур между данным телом и телами окружающей среды.

10. Механическая энергия – кинетическая энергия свободно движущихся тел и отдельных частиц.

11. Электрическая (электродинамическая) энергия – энергия электрического тока во всех его формах.

12. Электромагнитная (фотонная) энергия – энергия движения фотонов электромагнитного поля.

13. Мезонная (мезонодинамическая) энергия – энергия движения мезонов (пионов) – квантов ядерного поля, путем обмена которыми взаимодействуют нуклоны (теория Юкавы,1935 г.)

14. Гравидинамическая (гравитационная) энергия – энергия движения гипотетических квантов гравитационного поля – гравитонов.

15. Нейтринодинамическая энергия – энергия движения всепроникающих частиц β-поля – нейтрино.

Из перечисленных 15 видов энергии практическое значение имеют пока только 10: ядерная, химическая, упругостная, гравистатическая, электрическая, электромагнитная, электростатическая, магнитостатическая, тепловая, механическая.

Непосредственно же используются всего четыре вида: тепловая (около 75 %), механическая (около 20–22 %), электрическая (около 3–5 %) и электромагнитная (менее 1 %). Причем так широко вырабатываемая, подводимая по проводам электрическая энергия выполняет в основном роль переносчика энергии.

Главным источником непосредственно используемых видов энергии служит пока химическая энергия минеральных органических горючих (уголь, нефть, природный газ и др.), запасы которой, составляющие доли процента всех запасов энергии на Земле, находятся на грани истощения.

С декабря 1942 г., когда был пущен первый ядерный реактор, в роли нового источника энергии на сцену вышли ядерные и термоядерные топлива.

В будущем возможно появление как новых видов энергии, так и новых источников энергии. Классификация видов энергии позволяет исследовать и оценить все их возможные взаимопревращения.

2.2. Превращение и преобразование видов энергии

Сведем в таблицу-матрицу все виды энергий, имеющих практическое значение, и проанализируем возможности их взаимопревращений (рис. 2.2.1).

Анализ различных энергетических процессов показывает, что для превращения видов энергии необходимо выполнить два условия:

1) обеспечить должный уровень концентрации энергии;

2) подобрать рабочее тело определенных свойств.

При всех превращениях энергии, строго говоря, должна изменяться гравистатическая энергия ее систем – носителей, если их положение по отношению к поверхности Земли меняется.

Из матрицы превращений энергии следует, что возможности эти весьма ограничены. Самые простые, надежные и перспективные пути уже использованы и могут лишь совершенствоваться в направлении повышения экономичности превращений и удельной энергопроизводительности, т. е. мощности преобразователя.

https://pandia.ru/text/78/077/images/image011_30.jpg" width="336 height=105" height="105">

Е ИЭ – естественный (природный) источник энергии;

И ИЭ – искусственный ИЭ;

Н Э – накопитель энергии;

ПЕРЭ – переносчик энергии.

Рис. 2.2.1. Матрица возможных превращений и преобразование видов энергии,

имеющих практическое значение

Остались резервы в виде прямого превращения ядерной энергии в электрическую и механическую, химической в механическую, гравистатической в механическую. Перспективны превращения ядерной энергии в химическую и упругостную, гравистатической – в упругостную путем зарядки пружин и баллонов с газом в глубинах морей.

2.3. Преобразование энергии – проблема современной энергетики

Все сферы жизни и деятельности человека: приготовление пищи, промышленность, сельское хозяйство , транспорт, связь, создание комфортных условий в жилищах и производственных помещениях – требуют разнообразных форм энергии. Преобразование энергии первичных источников часто не удовлетворяет потребителей именно в видах получаемых энергий и требует необходимости их преобразований.

Современной науке известно 15 видов энергий, связанных с движением или различным взаимным расположением самых разнообразных материальных тел или частиц.

В зависимости от характера движения и природы сил, действующих между этими частицами, изменение энергии в системах таких частиц может проявляться в форме механической работы, в протекании электрического тока, в передаче теплоты, в изменении внутреннего состояния тел, в распространении электромагнитных колебаний и т. п.

Фундаментальным законом, управляющим преобразованием энергии, является закон сохранения энергии. Согласно этому закону, энергия не может исчезать или возникать из ничего. Она может лишь переходить из одного вида в другой.

А. Эйнштейн установил взаимопревращаемость энергии и массы и тем самым расширил смысл закона сохранения энергии, который теперь в обобщенном виде формулируется как закон сохранения энергии и массы. В соответствии с этим законом всякое изменение энергии тела ∆Е связано с изменением его массы ∆m формулой:

∆Е = ∆mс2 ,

где с – скорость света в вакууме , равная 3·108 м/с.

Из этой формулы следует, что если в результате какого-либо процесса масса всех тел, участвующих в процессе, уменьшится на 1 г, то при этом выделится энергия, равная 9·1013 Дж, что эквивалентно 3000 т условного топлива. Большинство практически наблюдаемых процессов являются макроскопическими и изменением массы можно пренебречь, однако при анализе ядерных превращений необходим закон сохранения энергии и массы.

При преобразовании энергии в каком-либо устройстве какая-то часть ее теряется. Эффективность этого устройства принято характеризовать обычно коэффициентом полезного действия, который можно определить согласно рис. 2.3.1.

Рис. 2.3.1. Схема для определения КПД

Согласно рис. 2.3.1, КПД можно определить как

https://pandia.ru/text/78/077/images/image015_59.gif" width="72 height=41" height="41">.

Потери энергии не нарушают закон сохранения энергии и означают лишь потери для того полезного эффекта, ради которого совершается преобразование энергии.

Последнее выражение показывает, что полезно используется только часть первичной энергии, которая была предназначена для получения полезного эффекта.

Все потери энергии в конечном итоге превращаются в теплоту, которая отдается окружающей среде (атмосферному воздуху, водоемам).

Следует отметить одно важное обстоятельство. Так как в соответствии с законом сохранения энергия не исчезает, то, следовательно, энергия первичных источников энергии, используемых в процессе деятельности человека почти полностью, передается в виде тепловой энергии окружающей среде. Таким образом, вся преобразуемая энергия, включая и потери энергии, в конечном счете, преобразуется в теплоту. Оговорка «почти» означает, что лишь очень небольшая часть производимой энергии на какое-то время сохраняется в виде потенциальной или внутренней энергии в сооружениях, изделиях, продуктах, производимых человеком.

Преобразование тепловой энергии

В связи с тем, что первичные источники энергии (газ, нефть, уголь) мы используем для получения тепловой энергии, с целью дальнейшего ее преобразования, возникает мысль об использовании тепловой энергии, отданной в процессе преобразования окружающей среде.

Второй закон термодинамики, представляющий универсальный закон природы, полагает запрет на такое «повторное» использование тепловой энергии.

Этот закон утверждает, что теплота является особой формой передачи энергии, и формулируется следующим образом: во всех реальных процессах любые формы энергии могут самопроизвольно превращаться в теплоту, но самопроизвольное превращение теплоты в другие формы энергии невозможно.

Это означает, что любая форма энергии может превратиться в теплоту без того, чтобы в этом процессе участвовали какие-нибудь дополнительные тела, состояние которых по окончании процесса как-то бы изменилось. Наоборот, теплота не может превратиться в другие формы энергии без того, чтобы в каких-либо окружающих телах по окончании процесса преобразования не остались бы какие-то изменения.

Таким образом, если закон сохранения энергии (первый закон термодинамики) утверждает взаимную превратимость и эквивалентность всех видов энергии, то второй закон термодинамики отмечает особенность теплоты, ее неравноправность в процессах преобразования энергии.

В термодинамике доказано, что для непрерывного получения работы из теплоты необходимо иметь рабочее тело, которое осуществляло бы последовательность круговых процессов, т. е. таких процессов, при которых оно периодически возвращалось бы в исходное состояние. В каждом таком круговом процессе, иначе называемом циклом, рабочее тело получает некоторое количество теплоты Q1 от первичного источника энергии при достаточно высокой температуре и отдает меньшее количество теплоты Q2 окружающей среде (воде или воздуху). Так как само рабочее тело, вернувшись в результате осуществления цикла в исходное состояние, не изменяет свою внутреннюю энергию, то в соответствии с первым законом термодинамики разность тепла превращается в работу:

L = Q1 - Q2 .

Возможность и эффективность преобразования теплоты в другие формы энергии (механическую, электрическую), в первую очередь, определяется температурой, при которой теплота Q1 может быть передана рабочему телу. На тепловой электростанции рабочим телом является водяной пар, который в паротурбинной установке получает теплоту от продуктов сгорания при наивысшей температуре около 540 оС.

Температура, при которой отдается теплота Q2 , также существенна с точки зрения эффективности преобразования теплоты в работу.

Однако, поскольку теплота Q2 отдается окружающей среде, в реальных условиях эта температура может изменяться лишь в нешироких пределах.

Эффективность преобразования теплоты в работу оценивают термическим КПД η t , под которым понимают отношение работы L , получаемой за цикл, к теплоте Q1 , получаемой рабочим телом от первичного источника энергии:

shortcodes">

Из за большого объема этот материал размещен на нескольких страницах:
1
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!