Женский журнал Ladyblue

Бинарные отношения и их свойства. Свойства отношений на множестве

Основы дискретной математики.

Понятие множества. Отношение между множествами.

Множество – совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Объекты, составляющие множество называются элементами множества. Для того чтобы некоторую совокупность объектов можно было называть множеством должны выполняться следующие условия:

· Должно существовать правило, по которому моно определить принадлежит ли элемент к данной совокупности.

· Должно существовать правило, по которому элементы можно отличить друг от друга.

Множества обозначаются заглавными буквами, а его элементы маленькими. Способы задания множеств:

· Перечисление элементов множества. - для конечных множеств.

· Указание характеристического свойства .

Пустым множеством – называется множество, не содержащее ни одного элемента (Ø).

Два множества называются равными, если они состоят из одних и тех же элементов. , A=B

Множество B называется подмножеством множества А ( , тогда и только тогда когда все элементы множества B принадлежат множеству A .

Например: , B =>

Свойство:

Примечание: обычно рассматривают подмножество одного и того е множества, которое называется универсальным (u). Универсальное множество содержит все элементы.

Операции над множествами.

A
B
1. Объединением 2-х множеств А и В называется такое множество, которому принадлежат элементы множества А или множества В (элементы хотя бы одного из множеств).

2.Пересечением 2-х множеств называется новое множество, состоящее из элементов, одновременно принадлежат и первому и второму множеству.

Н-р: , ,

Свойство: операции объединения и пересечения.

· Коммутативность.

· Ассоциативность. ;

· Дистрибутивный. ;

U
4.Дополнение . Если А – подмножество универсального множества U , то дополнением множества А до множества U (обозначается ) называется множество состоящее из тех элементов множества U , которые не принадлежат множеству А .

Бинарные отношения и их свойства.

Пусть А и В это множества производной природы, рассмотрим упорядоченную пару элементов (а, в) а ϵ А, в ϵ В можно рассматривать упорядоченные «энки».

(а 1 , а 2 , а 3 ,…а n) , где а 1 ϵ А 1 ; а 2 ϵ А 2 ; …; а n ϵ А n ;

Декартовым (прямым) произведением множеств А 1 , А 2 , …, А n , называется мн-во, которое состоит из упорядоченных n k вида .

Н-р: М = {1,2,3}

М× М= М 2 = {(1,1);(1,2);(1,3); (2,1);(2,2);(2,3); (3,1);(3,2);(3,3)}.

Подмножества декартова произведения называется отношением степени n или энарным отношением. Если n =2, то рассматривают бинарные отношения. При чем говорят, что а 1 , а 2 находятся в бинарном отношении R , когда а 1 R а 2.

Бинарным отношением на множестве M называется подмножество прямого произведения множества n самого на себя.

М× М= М 2 = {(a, b )| a, b ϵ M } в предыдущем примере отношение меньше на множестве М порождает следующее множество: {(1,2);(1,3); (2,3)}

Бинарные отношения обладают различными свойствами в том числе:

· Рефлексивность: .

· Антирефлексивность (иррефлексивность): .

· Симметричность: .

· Антисимметричность: .

· Транзитивность: .

· Асимметричность: .

Виды отношений.

· Отношение эквивалентности;

· Отношение порядка.

v Рефлексивное транзитивное отношение называется отношением квазипорядка.

v Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности.

v Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка.

v Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка.

Рассмотрим отношение «уважать», определенное на множестве всех людей %%M%%. Для полной информации о том, кто кого уважает, составим следующее множество %%R%%. Переберем все пары %%(a, b)%%, где %%a, b%% пробегают множество всех людей. Если %%a%% уважает %%b%%, то пару %%(a,b)%% отнесем к множеству %%R%%, иначе — нет.

Этот список полностью отражает отношение «уважать». Если нужно узнать, уважает ли человек %%a%% человека %%b%%, то просмотрим множество %%R%%. Если пара %%(a, b) \in R%%, то заключаем, что %%a%% уважает %%b%%. В случае %%(a,b) \notin R%% — %%a%% не уважает %%b%%.

Определение

Бинарным отношением , определенным на множестве %%M%%, называется произвольное подмножество %%R%% из декартового произведения %%M^2%%.

Пример

Рассмотрим отношение больше на множестве %%M = \{1, 2\}%%. Тогда

$$ M^2 = \big\{(1, 1), (1,2), (2,1), (2,2)\big\} $$ Из него выбирем все пары %%(a,b)%%, где %%a > b%%. Получим $$ R = \big\{(2,1)\big\} $$

Виды бинарных отношений

Рефлексивное бинарное отношение

рефлексивным , если для любого элемента %%a%% из %%M%%, выполняется условие %%a~R~a%%. $$ \begin{array}{l} \forall a\in M~~a~R~a \text{ или}\\ \forall a\in M~~(a,a) \in R. \end{array} $$

Примеры

  1. Рассмотрим отношение больше больше рефлексивным? Если да, то каждое число является больше самого себя, что неверно. Поэтому отношение больше не рефлексивно.
  2. Рассмотрим отношение равно на множестве действительных чисел. Оно является рефлексивным , так как каждое действительное число равно самому себе.

Симметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется симметричным , если для любых двух элементов %%a, b%% из %%M%%, из условия %%a~R~b%% следует условие %%b~R~a%%.

$$ \begin{array}{l} \forall a,b\in M~~a~R~b \rightarrow b~R~a \text{ или}\\ \forall a,b\in M~~(a,b) \in R \rightarrow (b,a) \in R. \end{array} $$

Примеры

  1. Рассмотрим отношение больше на множестве действительных чисел. Является ли отношение больше симметричным? Оно не является симметричным, так как если %%a > b%%, то условие %%b > a%% не выполняется. Поэтому отношение больше не симметрично.
  2. Пусть %%R%% — отношение, определенное на множестве %%M = \{a,b,c\}%%. При этом %%R = \big\{ (a,b), (b,c), (a,a), (b,a), (c,b)\big\}%%. Для этого отношения имеем %%\forall x,y \in M ~~ (x,y) \in R \rightarrow (y,x) \in R%%. По определению %%R%% симметрично.

Транзитивное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется транзитивным , если для любых элементов %%a, b, c%% из %%M%%, из условий %%a~R~b%% и %%b~R~c%% следует условие %%a~R~c%%.

$$ \begin{array}{l} \forall a,b,c\in M~~a~R~b \land b~R~c \rightarrow a~R~c \text{ или}\\ \forall a,b,c\in M~~(a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R. \end{array} $$

Пример

Рассмотрим отношение больше на множестве дейтсвительных чисел. Оно является транзитивным , так как для любых элементов выполняется условние %%\forall a,b,c\in M~~a > b \land b > c \rightarrow a > c%%. Так, например, подставив вместо %%a, b%% и %%c%% числа %%2, 1%% и %%0%% соответственно, получим: если %%2 > 1%% и %%1 > 0%%, то %%2 > 0%% — верное утверждение (вспомните импликацию, из истины следует истина).

Антисимметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется антисимметричным , если для любых элементов %%a, b%% из %%M%%, из условий %%a~R~b%% и %%b~R~a%% следует условие %%a = b%%.

$$ \begin{array}{l} \forall a,b,c\in M~~a~R~b \land b~R~a \rightarrow a = b \text{ или}\\ \forall a,b\in M~~(a,b) \in R \land (b,a) \in R \rightarrow a = b. \end{array} $$

Пример

Отношение больше или равно на множестве действительных чисел антисимметрично . Действительно, если %%a \geq b%% и %%b \geq a%%, %%a = b%%.

Эквивалентное бинарное отношение

эквивалентности , если оно рефлексивно , симметрично и транзитивно .

Нетрудно проверить, что отношение параллельности на множестве прямых плоскости является отношением эквивалентности.

Отношение частичного порядка

Бинарное отношение %%R%% на множестве %%M%% называется отношением частичного порядка , если оно рефлексивно , антисимметрично и транзитивно .

Отношение больше или равно на множестве действительных чисел является отношением частичного порядка.

Построение отрицаний

Пусть %%R%% — бинарное отношение на множестве %%M%%, и %%P%% — одно из следующих условий:

  • отношение %%R%% рефлексивно,
  • отношение %%R%% симметрично,
  • отношение %%R%% транзитивно,
  • отношение %%R%% антисимметрично.

Построим для каждого из них отрицание выполнения условия %%P%%.

Отрицание рефлексивности

По определению %%R%% рефлексивно, если каждый элемент множества %%M%% находится в отношении %%R%% к самому себе, то есть %%\forall a \in M~~a~R~a%%. Тогда рассмотрим отрицание рефлексивности как истинное высказывание %%\overline{\forall a \in M~~a~R~a}%%. Используем равносильность %%\overline{\forall x P(x)} \equiv \exists x \overline {P(x)}%%. В нашем случае получаем %%\forall a \in M~~a~R~a \equiv \exists a\in M~~a~\not\text{R }~a%%, что и нужно.

Аналогично получаем и остальные отрицания. В итоге получаем следующие утверждения:

    %%R%% не рефлексивно тогда и только тогда, когда

    $$ \exists a \in M~~a~\not R~a $$

    %%R%% не симметрично тогда и только тогда, когда

    $$ \exists a, b \in M~~ a~R~b \land b~\not R~a $$

    %%R%% не транзитивно тогда и только тогда, когда

    $$ \exists a, b, c \in M a~R~b \land b~R~c \land a~\not R~c $$

    %%R%% не антисимметрично тогда и только тогда, когда

    $$ \exists a, b \in M~~ a~R~b \land b~R~a \land a \neq b. $$

Базовые понятия и утверждения

1. Множества и операции над ними. Подмножеством понимают объединение в единое целое определенных вполне различаемых объектов. Объекты при этом называютэлементами образуемого ими множества.

Для обозначения множеств используют прописные буквы, а для обозначения элементов множеств - строчные буквы латинского алфавита.

Запись означает, чтоявляется элементом множества
; в противном случае пишут
.

Множество называют конечным , если оно содержит конечное число элементов, ибесконечным , если оно содержит бесконечное число элементов. Множество, не содержащее элементов, называютпустым и обозначают символом
.

Число элементов конечного множества
называют егомощностью и обозначают
.

Множество можно описать, указав свойство, присущее элементам только этого множества. Множество всех объектов, обладающих свойством
, обозначают
. Конечное множество можно задать путем перечисления его элементов, т.е.
.

Например, запись
означает, что множество
содержит два элемента - числа
и.

Если каждый элемент множества есть элемент множестваB , то говорят, чтоестьподмножество , и пишут:
.

Заметим, что пустое множество
считают подмножеством любого множества.

Если
и
, то говорят, что множестваиравны , и пишут:
.

Если
и
, тоназываютсобственным подмножеством и, чтобы подчеркнуть это, применяют запись
.

Множество всех подмножеств множества
называют егобулеаном и обозначают
.

Например, если
, то

Вводят целый ряд операций над множествами , позволяющих получать из одних множеств другие.

1. Множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств и, называютобъединением A и B и обозначают
, т.е..

2. Множество, состоящее из тех и только тех элементов, которые принадлежат как множеству , так и множеству, называютпересечением A и B и обозначают
, т.е.
.

Если
, то множестваиназываютнепересекающимися .

3. Множество, состоящее из всех элементов множества , не принадлежащих множеству, называютразностью A и B и обозначают
, т.е.
.

4. Обычно в конкретных рассуждениях всякое множество рассматривают как подмножество некоторого достаточно широкого множества, которое называют универсальным . Множество элементов универсального множества, не принадлежащих множеству, называютдополнением и обозначают, т.е.
. Из определения следует, что
.

5. Множество, состоящее из упорядоченных пар
, в которых- элемент множества, а- элемент множества, называютд екартовым произведением множеств A и B и обозначают
, т.е..

Удобным приемом наглядного изображения операций являются диаграммы Эйлера - Венна. На них множества представлены плоскими фигурами (чаще всего кругами). Области, соответствующие множествам, полученным в результате операции, обычно выделяют цветом. На рис. 1.1 приведены диаграммы Эйлера - Венна, иллюстрирующие некоторые из введенных операций.

Рис. 1.1.

В качестве примеранайдем объединение, пересечение, разность и декартово произведение множеств
и
.

Поскольку
,
, то
,
,
,.

Пусть задано универсальное множество . Тогда для любых множеств
выполняются следующиесвойства :

коммутативные законы :

1.
; 2.
;

ассоциативные законы :

дистрибутивные законы :

законы идемпотентности :

7.
; 8.
;

законы де Моргана :

9.
; 10.
;

законы нуля :

11.
; 12.
;

законы единицы :

13.
; 14.
;

законы поглощения :

15.
; 16.
;

законы дополнения :

17.
; 18.
;

закон двойного дополнения :

19.
.

О том, как доказываются эти равенства, можно узнать во второй части данного параграфа.

Операции объединения, пересечения и декартова произведения можно обобщить на случай произвольного конечного числа участников.

Объединением множеств
называют множество, любой элемент которого является элементом хотя бы одного из данных множеств. Обозначение:
или.

Пересечением множеств
называют множество, любой элемент которого является элементом каждого из данных множеств. Обозначение:
или .

Декартовым произведением множеств
называют множество

В частном случае одинаковых сомножителей декартово произведение
обозначают
.

Например, если
, то

Приведем без доказательств утверждения о числе элементов конечных множеств .

1. Если между конечными множествами исуществует взаимно-однозначное соответствие, то
.

2. Если

также конечно и

Например,если
, то множество
имеет мощность
.

3. Если
- конечные попарно-непересекающиеся множества, то множество
также конечно и

Это утверждение называют правилом суммы .

4. Если
- конечные множества, то множествотакже конечно и

Последнее равенство называется формулой включений и исключений . В частных случаях двух и трех множеств она принимает вид:

Заметим, что формула включений и исключений действует и в том случае, когда множества
попарно не пересекаются (в этом случае все слагаемые в правой части формулы, содержащие пересечения множеств, обнуляются и формула трансформируется в правило суммы).

Пусть, например,
,
,
, причем
, а
. Тогда
можно найти по правилу суммы:, а для поиска
нужно использовать формулу включений и исключений:.

Пример 1.В группе из 100 туристов 65 человек знают английский язык, 55 человек знают французский и 38 человек знают оба языка. Сколько туристов в группе знает хотя бы один из этих языков?

◄ Пусть и- множества туристов, знающих соответственно английский и французский язык. Тогда
- множество туристов, знающих хотя бы один из этих языков. Число таких туристов находим по формуле включений и исключений.

Упражнение 1.1.Из 100 студентов-лингвистов польский язык изучают 42, чешский - 25, венгерский - 36, польский и чешский - 15, польский и венгерский - 14, чешский и венгерский - 12, польский, чешский и венгерский - 5. Сколько студентов не изучают ни одного из перечисленных языков?

Совокупность непустых, попарно непересекающихся подмножеств
множестваназываютразбиением , если
.

Например, для множества
совокупность подмножеств
разбиением является, а совокупность подмножеств
не является.

Упражнение 1.2. Найти все разбиения множества
и множества
.

2. Бинарные отношения на множестве. Бинарные отношения -простой и вместе с тем очень важный объект дискретной математики.

Определение. Бинарным отношением на множестве
называется подмножество декартова произведения
.

Для обозначения бинарных отношений, как правило, будем использовать строчные буквы греческого алфавита:
и т.п.

Пусть - некоторое бинарное отношение на множестве
. Если
, то говорят, чтоисвязаны бинарным отношениеми пишут
.

Пример 2. Пусть
. Тогда

и следующие множества могут служить примерами бинарных отношений на множестве
:

Перечислим ряд важных свойств , которыми могут обладать бинарные отношения.

Определенное на множестве
бинарное отношение:

рефлексивно, если для
выполняется
;

симметрично , если для
из
следует
;

антисимметрично , если для
из
и
следует
;

транзитивно, если для
из
и
следует
.

Определение. Если бинарное отношение рефлексивно, симметрично и транзитивно одновременно, то оно называется отношением эквивалентности.

Например, бинарное отношениеиз примера 2 рефлексивно, антисимметрично и транзитивно,- антисимметрично и транзитивно,- рефлексивно, симметрично, антисимметрично и транзитивно,- рефлексивно, симметрично и транзитивно. Следовательно, бинарные отношенияиявляются отношениями эквивалентности, аи- нет.

Определение. Пусть- отношение эквивалентности на множестве
и- элемент
. Классом эквивалентности элементапо бинарному отношениюназывают множество
.

Например, множества
,
,

по отношению, а
,
,
- классы эквивалентности элементов
по.

Упражнение 1.3.На множестве
определены бинарные отношения
и
. Задать эти бинарные отношения перечислением элементов, указать свойства этих бинарных отношений, определить, являются ли они отношениями эквивалентности (если являются, то найти классы эквивалентности их элементов).

Перечислим свойства классов эквивалентности , присущие любому отношению эквивалентности, определенному на произвольном множестве
.

1. Класс эквивалентности любого элемента множества
- непустое множество.

2. Классы эквивалентности любых двух элементов множества
либо не пересекаются, либо совпадают.

3. Объединение классов эквивалентности всех элементов множества
совпадает с самим множеством
.

Доказательство этих свойств приведено во второй части параграфа.

Из свойств классов эквивалентности следует утверждение: в сякое отношение эквивалентности, заданное на множестве
, порождает разбиение множества
на классы эквивалентности этого отношения.

Для иллюстрации этого утверждения вновь обратимся к бинарным отношениям ииз примера 2.

Очевидно, что классы эквивалентности
,
,
элементов множества
по отношениюне пусты, попарно не пересекаются, а их объединение совпадает с самим множеством
. Следовательно,порождает разбиение множества
на три подмножества:
,
,.

Для классов эквивалентности
,
,
элементов
по отношениюимеем: классы эквивалентности элементов
исовпадают и при этом не имеют общих элементов с классом эквивалентности элемента, объединение всех классов совпадает с множеством
. Следовательно, отношениепорождает разбиение множества
на два подмножества:
,
.

Рассмотрим еще один важный класс бинарных отношений.

Определение. Бинарное отношение называется отношением порядка, если оно рефлексивно, антисимметрично и транзитивно.

Пусть - отношение порядка на
. Если для любых двух элементовимножества
верно, что либо
, либо
, тоназывают отношениемлинейного порядка. В противном случае говорят, что- отношениечастичного порядка .

Например, отношениями порядка являются отношенияииз примера 2 (- линейного,- частичного).

Пример 3. Рассмотрим на множестве
бинарное отношение, определяемое условием. Это отношение рефлексивно, антисимметрично и транзитивно, и, значит, является отношением порядка, причем частичного, поскольку элементне связан с элементоми элементне связан с элементом.

Связанные определения

Свойства отношений

Бинарные отношения могут обладать различными свойствами, такими как

Виды отношений

  • Рефлексивное транзитивное отношение называется отношением квазипорядка.
  • Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности .
  • Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка .
  • Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка .
  • Полное антисимметричное (для любых x, y выполняется xRy или yRx) транзитивное отношение называется отношением линейного порядка.
  • Антирефлексивное асимметричное отношение называется отношением доминирования.

Виды двухместных отношений

  • Обратное отношение [уточнить ] (отношение, обратное к R) - это двухместное отношение, состоящее из пар элементов (у, х), полученных перестановкой пар элементов (х, у) данного отношения R. Обозначается: R −1 . Для данного отношения и обратного ему верно равенство: (R −1) −1 = R.
  • Взаимо-обратные отношения (взаимообратные отношения) - отношения, являющиеся обратными друг по отношению к другу. Область значений одного из них служит областью определения другого, а область определения первого - областью значений другого.
  • Рефлексивное отношение - двухместное отношение R, определённое на некотором множестве и отличаю­щееся тем, что для любого х этого множества элемент х на­ходится в отношении R к самому себе, то есть для любого элемента х этого множества имеет место xRx. Примеры рефлексивных отношений: равенство , одновременность , сходство.
  • Антирефлексивное отношение (Иррефлексивное отношение, отметим, что также как антисимметричность не совпадает с несимметричностью иррефлексивность не совпадает с нерефлексивностью.) - двухместное отношение R, определённое на некотором множестве и отличаю­щееся тем, что для любого элемента х этого множества неверно, что оно находится в отношении R к самому себе (неверно, что xRx), то есть возможен случай, что элемент множества не находится в отно­шении R к самому себе. Примеры нерефлексвных отношений: «заботиться о», «развлекать», «нервировать».
  • Транзитивное отношение - двухместное отношение R, оп­ределенное на некотором множестве и отличающееся тем, что для любых х, у, z этого множества из xRy и yRz следует xRz (xRy&yRzxRz). Примеры транзитивных отношений: «больше», «меньше», «равно», «подобно», «выше», «севернее».
  • Нетранзитивное отношение [уточнить ] - двухместное отношение R, оп­ределенное на некотором множестве и отличающееся тем, что для любых х, у, z этого множества из xRy и yRz не следует xRz ((xRy&yRzxRz)). Пример нетранзитивного отношения: «x отец y»
  • Симметричное отношение - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых элементов х и у этого множества из того, что х находится к у в отношении R (xRy), следует, что и у находится в том же отношении к х (уRx). Примером симметричных отношений могут быть равенство (=), отношение эквивалентности , подобия , одновременности, некоторые отношения родства (например, отношение братства).
  • Антисимметричное отношение - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых х и у из xRy и xR −1 y следует х = у (то есть R и R −1 выполняются одновременно лишь для равных между собой членов).
  • Асимметричное отношение [уточнить ] - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых х и у из xRy следует yRx. Пример: отношение «больше» (>) и «меньше» (<).
  • Отношение эквивалентности (отношение тождества [уточнить ] , отношение типа равенства) - двухместное отношение R между предметами х и у в предметной области D, удовлетворяющее следующим аксиомам (условиям): Таким образом, отношение типа равенства является одновременно рефлексивным, симметричным и транзитивным. Примеры: равенство, равномощность двух множеств, обмениваемость товаров на рынке, подобие , одновременность . Пример отношения, которое удовлетворяет аксиоме (3), но не удовлетворяет аксиомам (1) и (2): «больше».
  • Отношения порядка - отношения, обладающие только некоторыми из трёх свойств отношения эквивалентности. В частности, отношение рефлексивное и транзитивное, но несимметричное (например, «не больше») образует «нестрогий» порядок. Отношение транзитивное, но нерефлексивное и несимметричное (например, «меньше») - «строгий» порядок.
  • Функция - двухместное отношение R , определенное на некотором мно­жестве, отличающееся тем, что каждому значению x отно­шения xRy y . Пример: «y отец x ». Свойство функциональности отно­шения R записывается в виде аксиомы: (xRy и xRz )→(y z ). Поскольку каждому значению x в выражениях xRy и xRz соответствует одно и то же значение, то y и z совпадут, окажутся одними и теми же. Функциональное отношение однозначно, поскольку каждому значению x отношения xRy соответствует лишь одно-единственное значение y , но не наоборот.
  • Биекция (одно-однозначное отношение) - двухместное отношение R , определенное на некотором мно­жестве, отличающееся тем, что в нём каждому значению х соответствует единственное значение у , и каждому значению у соответствует единственное значение х . Одно-однозначное отношение является частным случаем однозначного отношения.
  • Связанное отношение - это двухместное отношение R , определённое на некотором множестве, отличающееся тем, что для любых двух различных элементов х и у из этого множества, одно из них находится в отношении R к другому (то есть выполнено одно из двух соотношений: xRy или yRx ). Пример: отношение «меньше» (<).

Операции над отношениями

Так как отношения, заданные на фиксированной паре множеств , , суть подмножества множества , то совокупность всех этих отношений образует булеву алгебру относительно операций объединения, пересечения и дополнения отношений. В частности, для произвольных ,

Часто вместо объединения, пересечения и дополнения отношений говорят об их дизъюнкции, конъюнкции и отрицании.

Например, , , то есть объединение отношения строгого порядка с отношением равенства совпадает с отношением нестрого порядка, а их пересечение пусто.

Кроме перечисленных важное значение имеют ещё операции обращения и умножения отношений, определяемые следующим образом.

Если , то обратным отношением называется отношение , определённое на паре , и состоящее из тех пар , для которых . Например, .

Пусть теперь , . Произведением отношений , называется отношение такое, что

Если , и , то произведение отношений не определено. Если же отношения рассматривать определённые на каком-то множестве , то такой ситуации не возникает.

Например, рассмотрим отношение строгого порядка определённого на множестве натуральных чисел. Несложно заметить, что

Бинарные отношения и называются перестановочными, если . Несложно заметить, что для любого бинарного отношения , определённого на , , где символом обозначено равенство, определённое на . Однако равенство не всегда справедливо.

Имеют место следующие тождества:

Отметим, что аналоги последних двух тождеств для не имеют места.

Некоторые свойства отношения можно определить, используя операции над отношениями:

См. также

Литература

  • А. И. Мальцев. Алгебраические системы. - М .: Наука, 1970.

Wikimedia Foundation . 2010 .

Смотреть что такое "Бинарное отношение" в других словарях:

    Бинарное отношение - . Иначе: двуместное или двойственное. «Бинарным отношением на множестве X» называется подмножество упорядоченных пар элементов из X. Примерами Б.о. являются равенство (=), неравенства (< или >), отношение включения A Ì B.… … Экономико-математический словарь

    бинарное отношение - Иначе: двуместное или двойственное. «Бинарным отношением на множестве X» называется подмножество упорядоченных пар элементов из X. Примерами Б.о. являются равенство (=), неравенства (), отношение включения A ? B. В широком смысле слова… … Справочник технического переводчика

    Двуместный предикат на заданном множестве. Под Б. о. иногда понимают подмножество множества упорядоченных пар (а, 6) элементов заданного множества А. Б. о. частный случай отношения. Пусть. Если, то говорят, что элемент находится в бинарном… … Математическая энциклопедия

    В логике то, что в отличие от свойства характеризует не отдельный предмет, а пару, тройку и т.д. предметов. Традиционная логика не рассматривала О.; в современной логике О. пропозициональная функция от двух или большего числа переменных. Бинарным … Философская энциклопедия

    отношение - ОТНОШЕНИЕ множество упорядоченных п ок индивидов (где п > 1), т.е. двоек, троек и т.д. Число п называется «местностью», или «арностью», О. и, соответственно, говорят о n местном (п арном) О. Так, например, двуместное О. называют… … Энциклопедия эпистемологии и философии науки

    В теории потребления это формальное описание способности потребителя сравнивать (упорядочивать по желательности) разные наборы товаров (потребительские наборы). Чтобы описать отношение предпочтения, не обязательно измерять желательность… … Википедия

    У этого термина существуют и другие значения, см. Отношение. Отношение математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Отношения обычно классифицируются по количеству связываемых объектов … Википедия

    У этого термина существуют и другие значения, см. Отношение. Отношение в логике первого порядка двух и более аргументный предикат (многоместный предикат), двух и более предикатное свойство. Знак отношения: R.[уточнить] В терминах отношений… … Википедия

    У этого термина существуют и другие значения, см. Эквивалентность. Отношение эквивалентности () на множестве это бинарное отношение, для которого выполнены следующие условия: Рефлексивность: для любого в, Симметричность: если … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Бинарное отношение на мно … Википедия

электронная книга

Определение . Бинарным отношением R называется подмножество пар (a,b)∈R декартова произведения A×B, т. е. R⊆A×B . При этом множество A называют областью определения отношения R, множество B – областью значений.

Обозначение: aRb (т. е. a и b находятся в отношении R). /

Замечание : если A = B , то говорят, что R есть отношение на множестве A .

Способы задания бинарных отношений

1. Списком (перечислением пар), для которых это отношение выполняется.

2. Матрицей. Бинарному отношению R ∈ A × A , где A = (a 1 , a 2 ,..., a n), соответствует квадратная матрица порядка n , в которой элемент c ij , стоящий на пересечении i-й строки и j-го столбца, равен 1, если между a i и a j имеет место отношение R , или 0, если оно отсутствует:

Свойства отношений

Пусть R – отношение на множестве A, R ∈ A×A . Тогда отношение R:

    рефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефлексивного отношения содержит только единицы);

    антирефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефле сивного отношения содержит только нули);

    симметрично, если Ɐ a , b ∈ A: a R b ⇒ b R a (матрица такого отношения симметрична относительно главной диагонали, т.е. c ij c ji);

    антисимметрично, если Ɐ a, b ∈ A: a R b & b R a ⇒ a = b (в матрице такого отношения отсутствуют единицы, симметричные относительно главной диагонали);

    транзитивно, если Ɐ a, b, c ∈ A: a R b & b R c ⇒ a R c (в матрице такого отношения должно выполняться условие: если в i-й строке стоит единица, например в j-ой координате (столбце) строки, т. е. c ij = 1 , то всем единицам в j-ой строке (пусть этим единицам соответствуют k е координаты такие, что, c jk = 1) должны соответствовать единицы в i-й строке в тех же k-х координатах, т. е. c ik = 1 (и, может быть, ещё и в других координатах).

Задача 3.1. Определите свойства отношения R – «быть делителем», заданного на множестве натуральных чисел.

Решение.

отношение R = {(a,b):a делитель b}:

    рефлексивно, не антирефлексивно, так как любое число делит само себя без остатка: a/a = 1 для всех a∈N ;

    не симметрично, антисимметрично, например, 2 делитель 4, но 4 не является делителем 2;

    транзитивно,таккакесли b/a ∈ N и c/b ∈ N, то c/a = b/a ⋅ c/b ∈ N, например, если 6/3 = 2∈N и 18/6 = 3∈N, то 18/3 = 18/6⋅6/3 = 6∈N.

Задача 3.2. Определите свойства отношения R – «быть братом», заданного на множестве людей.
Решение.

Отношение R = {(a,b):a - брат b}:

    не рефлексивно, антирефлексивно из-за очевидного отсутствия aRa для всех a;

    не симметрично, так как в общем случае между братом a и сестрой b имеет место aRb , но не bRa ;

    не антисимметрично, так как если a и b –братья, то aRb и bRa, но a≠b;

    транзитивно, если называть братьями людей, имеющих общих родителей (отца и мать).

Задача 3.3. Определите свойства отношения R – «быть начальником», заданного на множестве элементов структуры

Решение.

Отношение R = {(a,b) : a - начальник b}:

  • не рефлексивно, антирефлексивно, если в конкретной интерпретации не имеет смысла;
  • не симметрично, антисимметрично, так как для всех a≠b не выполняется одновременно aRb и bRa;
  • транзитивно, так как если a начальник b и b начальник c , то a начальник c .

Определите свойства отношения R i , заданного на множестве M i матрицей, если:

  1. R 1 «иметь один и тот же остаток от деления на 5»; M 1 множество натуральных чисел.
  2. R 2 «быть равным»; M 2 множество натуральных чисел.
  3. R 3 «жить в одном городе»; M 3 множество людей.
  4. R 4 «быть знакомым»; M 4 множество людей.
  5. R 5 {(a,b):(a-b) - чётное; M 5 множество чисел {1,2,3,4,5,6,7,8,9}.
  6. R 6 {(a,b):(a+b) - чётное; M 6 множество чисел {1,2,3,4,5,6,7,8,9}.
  7. R 7 {(a,b):(a+1) - делитель (a+b)} ; M 7 - множество {1,2,3,4,5,6,7,8,9}.
  8. R 8 {(a,b):a - делитель (a+b),a≠1}; M 8 - множество натуральных чисел.
  9. R 9 «быть сестрой»; M 9 - множество людей.
  10. R 10 «быть дочерью»; M 10 - множество людей.

Операции над бинарными отношениями

Пусть R 1 , R 1 есть отношения, заданные на множестве A .

    объединение R 1 ∪ R 2: R 1 ∪ R 2 = {(a,b) : (a,b) ∈ R 1 или (a,b) ∈ R 2 } ;

    пересечение R 1 ∩ R 2: R 1 ∩ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∈ R 2 } ;

    разность R 1 \ R 2: R 1 \ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∉ R 2 } ;

    универсальное отношение U: = {(a;b)/a ∈ A & b ∈ A}. ;

    дополнение R 1 U \ R 1 , где U = A × A;

    тождественное отношение I: = {(a;a) / a ∈ A};

    обратное отношение R -11 : R -11 = {(a,b) : (b,a) ∈ R 1 };

    композиция R 1 º R 2: R 1 º R 2: = {(a,b) / a ∈ A&b ∈ B& ∃ c ∈ C: aR 1 c & c R 2 b}, где R 1 ⊂ A × C и R 2 ⊂ C × B;

Определение. Степенью отношения R на множестве A называется его композиция с самим собой.

Обозначение:

Определение . Если R ⊂ A × B , то R º R -1 называется ядром отношения R .

Теорема 3.1. Пусть R ⊂ A × A – отношение, заданное на множестве A .

  1. R рефлексивно тогда и только тогда, (далее используется знак ⇔) когда I ⊂ R.
  2. R симметрично ⇔ R = R -1 .
  3. R транзитивно ⇔ R º R ⊂ R
  4. R антисимметрично ⇔ R ⌒ R -1 ⊂ I .
  5. R антирефлексивно ⇔ R ⌒ I = ∅ .

Задача 3.4 . Пусть R - отношение между множествами {1,2,3} и {1,2,3,4}, заданное перечислением пар: R = {(1,1), (2,3), (2,4), (3,1), (3,4)}. Кроме того, S - отношение между множествами S = {(1,1), (1,2), (2,1), (3,1), (4,2)}. Вычислите R -1 , S -1 и S º R. Проверьте, что (S º R) -1 = R -1 , S -1 .

Решение.
R -1 = {(1,1), (1,3), (3,2), (4,2), (4,3)};
S -1 = {(1,1), (1,2), (1,3), (2,1), (2,4)};
S º R = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)};
(S º R) -1 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)};
R -1 º S -1 = {(1,1), (1,2), (1,3), (2 ,1), (2,2), (2,3)} = (S º R) -1 .

Задача 3.5 . Пусть R отношение «...родитель...», а S отношение «...брат...» на множестве всех людей. Дайте краткое словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 и R º R.

Решение.

R -1 - отношение«...ребёнок...»;

S -1 - отношение«...брат или сестра...»;

R º S - отношение «...родитель...»;

S -1 º R -1 - отношение «...ребёнок...»

R º R - отношение «...бабушка или дедушка...»

Задачи для самостоятельного решения

1) Пусть R - отношение «...отец...», а S - отношение «...сестра...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , R º R.

2) Пусть R - отношение «...брат...», а S - отношение «...мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , S º S.

3) Пусть R - отношение «...дед...», а S - отношение «...сын...» на множестве всех людей. Дайте словесное описание отношениям:

4) Пусть R - отношение «...дочь...», а S - отношение «...бабушка...» на множе- стве всех людей. Дайте словесное описание отношениям:

5) Пусть R - отношение «...племянница...», а S - отношение «...отец...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

6) Пусть R - отношение «сестра...», а S - отношение «мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

7) Пусть R - отношение «...мать...», а S - отношение «...сестра...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S1, R º S, S1 º R1, S º S.

8) Пусть R - отношение «...сын...», а S - отношение «...дед...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

9) Пусть R - отношение «...сестра...», а S - отношение «...отец...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

10) Пусть R - отношение «...мать...», а S - отношение «...брат...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!