Женский журнал Ladyblue

Open Library - открытая библиотека учебной информации. Традиционная энергия

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО "БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра технологии ВОП


РЕФЕРАТ

по дисциплине: Основы энергосбережения

на тему: Классификация первичной энергии


ФМк, 3-й курс, РМП-1 Я.О. Гамлинская

Проверил П.Г. Добриян




1. Классификация первичной энергии


Первичная энергия - форма энергии в природе, которая не была подвергнута процессу искусственного преобразования. Первичная энергия может быть получена из невозобновляемых <#"justify">Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис.1 представлена схема классификации первичной энергии.


Рис.1. Классификация первичной энергии


При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.

К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).

Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).


2. Традиционная энергетика и ее характеристика


Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии - электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.

Производство энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства,в котором можно выделить пять стадий:

Получение и концентрация энергетических ресурсов.

Передача энергетических ресурсов к установкам, преобразующим энергию.

Преобразование первичной энергии во вторичную.

Передача и распределение преобразованной энергии.

Потребление энергии, осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной форме.

Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера быта и обслуживания.

Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35-40%, остальная часть теряется, причем большая часть - в виде теплоты.


3. Нетрадиционная энергетика и ее характеристика


Главным фактором роста энергопроизводства является рост численности населения и прогресс качества жизни общества, который тесно связан с потреблением энергии на душу населения. Сейчас на каждого жителя Земли приходится 2 кВт, а признанная норма качества - 10 кВт (в развитых странах). Таким образом, развитие энергетики на невозобновляемых ресурсах ставит жесткий предел численности населения планеты. Однако уже через 75 лет население Земли может достигнуть 20 млрд. чел. Отсюда видно: уже сейчас надо думать о сокращении темпов прироста населения примерно вдвое, к чему цивилизация совсем не готова. Очевиден надвигающийся энергодемографический кризис. Это еще один веский аргумент в пользу развития нетрадиционной энергетики.

Многие специалисты энергетики считают, что единственный способ преодоления кризиса - это масштабное использование возобновляемых источников энергии: солнечной, ветровой, океанической, или как их еще называют нетрадиционных. Правда, ветряные и водяные мельницы известны с незапамятных времен, и в этом смысле они - самые, что ни есть традиционные.

Использование традиционных энергоресурсов, кроме поглощения кислорода, приводит к значительному загрязнению окружающей среды. Ограниченность энергоресурсов, влияние их использования на состав атмосферного воздуха и другие негативные воздействия на окружающую среду (образование отходов, нарушение пластов земной коры, изменение климата) вызывают повышенный интерес во всем мире к нетрадиционным источникам энергии, к которым относятся: солнечная энергия; энергия ветра; геотермальная энергия; энергия океанов и морей в виде аккумулированной теплоты, морских течений, морских волн, приливов и отливов, использование водорослей, сельскохозяйственных и городских отходов, биомассы.

Экономическое сравнение электростанций разного типа (на1991год) представлено в табл.3.1.


Таблица 3.1

Экономическое сравнение электростанций разного типа

Тип электростанцииЗатраты на строительство, USD/кВтСтоимость произведенной энергии, цент/кВт·чТЭС на угле1000 - 14005,2 - 6,3АЭС2000 - 35003,6 - 4,5ГЭС1000 - 25002,1 - 6ВЭС300 - 10004,7 - 7,2Приливные (ПЭС) 1000 - 35005 - 9ВолновыеОт 13000от 15Солнечные (СЭС) От 14000от 20

Экономически целесообразным считается строительство электростанций с удельными капитальными затратами до 2000 USD/кВт.

Удельные мощности нетрадиционных возобновляемых источников энергии (НВИЭ) для сопоставления и сравнения с традиционными источниками представлены в табл.3.2.


Таблица 3.2

Удельные мощности нетрадиционных возобновляемых источников энергии

ИсточникМощность, Вт/м2ПримечаниеСолнце100 - 250Ветер1500 - 5000При скорости 8-12 м/с, может быть и больше в зависимости от скорости ветраГеотермальное тепло0.06Ветровые океанические волны3000 Вт/пог. мМожет достигать 10000 Вт/пог. мДля сравнения: Двигатель внутреннего сгорания Турбореактивный двигатель Ядерный реактор Около 100 кВт/л До 1 МВт/л До 1 МВт/л

Говоря о НВИЭ, необходимо также отметить, что многие из них на единицу произведенной электроэнергии и обеспечение функционирования требуют расхода природных источников энергии (табл.3.3).


Таблица 3.3

Энергетические потребности для производства электроэнергии при использовании возобновляемых источников

Тип энергетической установкиРасход энергии природного источника на единицу произведенной электроэнергии, отн. ед. Установка на биомассе0,82 - 1,13ГеоТЭС0,08 - 0,37ГЭС малой мощности большой мощности0,03 - 0,12 0,09 - 0,39Солнечная фотоэлектрическая установка: наземная спутниковая 0,47 0,11 - 0,48Солнечная теплоустановка (зеркала) 0,15 - 0,24Приливная станция0,07Ветроэнергетическая установка0,06 - 1,92Волновая станция0,3 - 0,58

Ветроэнергетика. Ветровая энергетика - это получение механической энергии от ветра с последующим преобразованием ее в электрическую. Имеются ветровые двигатели с вертикальной и горизонтальной осью вращения. Энергию ветра можно успешно использовать при скорости ветра 5 и более м/с. Недостатком является шум.

Ориентиром в определении технического потенциала Республики Беларусь могут служить официальные оценки возможной доли ветроэнергетики в сложившейся структуре электропотребления таких стран, как Великобритания и Германия. Доля ветроэнергетики в этих странах оценена в 20%.

Потенциал энергии ветра в мире огромен. Теоретически эта энергия могла бы удовлетворить все потребности Европы. Последние инженерные успехи в строительстве ветровых гене-раторов, способных работать при низких скоростях, делают ис-пользование ветра экономически оправданным. Однако, ограни-чения на строительство ВЭС, особенно в густонаселенных райо-нах, значительно снижают потенциал этого источника энергии.

Стоимость ветровой энергии снижается на 15% в год и даже сегодня может конкурировать на рынке, а главное - имеет перспективы дальнейшего снижения в отличие от стоимости энергии, получаемой на АЭС (последняя повышается на 5% в год); при этом темпы роста ветроэнергетики в настоящее время превышают 25% в год. Использование энергии ветра в различных государствах набирает силу, что находит подтверждение в табл.3.4.

Гелиоэнергетика - получение энергии от Солнца. Имеется несколько технологий солнечной энергетики. Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца, собранные из большого числа последовательно и параллельно соединенных элементов, получили название солнечных батарей .

Таблица 3.4

Развитие ветроэнергетики в странах

Государство Мощности ветроэлектростанций, введенных в 1995 г., МВтСуммарные действующие мощности ветро-электростанций по состоянию на 1996 г., МВтГермания5001132Индия375576Дания98637Нидерланды95219Испания58133США531654Швеция2969Китай1444Италия1133Другие57370Всего12894897

Получение электроэнергии от лучей Солнца не дает вредных выбросов в атмосферу, производство стандартных силиконовых солнечных батарей также причиняет мало вреда. Но производство в широких масштабах многослойных элементов с использованием таких экзотических материалов, как арсенид галлия или сульфид кадмия, сопровождается вредными выбросами.

Солнечные батареи занимают много места. Однако в сравнении с другими источниками, например с углем, они вполне приемлемы. Более того, солнечные батареи могут помещаться на крышах домов, вдоль шоссейных дорог, а также использоваться в богатых солнцем пустынях.

Особенности солнечных батарей позволяют располагать их на значительном расстоянии, а модульные конструкции можно легко транспортировать и устанавливать в другом месте. Поэтому солнечные батареи, применяемые в сельской местности и в отдаленных районах, дают более дешевую электроэнергию. И, конечно, солнечных лучей по всему земному шару найдется больше, чем других источников энергии.

Главной причиной, сдерживающей использование солнечных батарей, является их высокая стоимость, которая в будущем, вероятно, снизится благодаря развитию более эффективных и дешевых технологий. Когда же цена производства солнечной энергии сравняется с ценой энергии от сжигания топлива, оно получит еще более широкое распространение, причем с начала 90-х гг. темпы роста гелио-энергетики составляют 6% в год, в то время как мировое потребление нефти растет на 1,5% в год.

В условиях Великобритании жители сельской местности покрывают потребность в тепловой энергии на 40-50% за счет использования энергии Солнца.

В Германии (под Дюссельдорфом) проводились испытания солнечной водонагревательной установки площадью коллекторов 65 м2. Эксплуатация установки показала, что средняя экономия тепла, расходуемого на обогрев, составила 60%, а в летний период - 80-90%. Для условий Германии семья из 4 человек может обеспечить себя теплом при наличии энергетической крыши площадью 6-9 м2.

Современные солнечные коллекторы могут обеспечить нужды сельского хозяйства в теплой воде в летний период на 90%, в переходный период - на 55-65%, в зимний - на 30%.

Наибольшей суммарной площадью установленных солнечных коллекторов располагают: США - 10 млн. м2, Япония - 8 млн. м2, Израиль - 1,7 млн. м2, Австралия - 1,2 млн. м2. В настоящее время 1 м2 солнечного коллектора вырабатывает электрической энергий:

·4,86-6,48 кВт·в сутки;

·1070-1426 кВт·ч в год.

Нагревает воды в сутки:

·420-360 л (при 30°С);

·210-280 л (при 40°С);

·130-175 л (при 50°С);

·90-120 л (при 60°С).

Экономит в год:

·электроэнергии - 1070-1426 кВт·ч;

·условного топлива - 0,14-0,19 т;

·природного газа - 110-145 нм3;

·угля - 0,18-0,24 т;

·древесного топлива - 0,95-1,26 т.

Площадь солнечных коллекторов 2-6 млн. м2 обеспечивает выработку 3,2-8,6 млрд. кВт·ч энергии и экономит 0,42-1,14 млн. т. у. т. в год.

Биоэнергетика - это энергетика, основанная на использовании биотоплива. Она включает использование растительных отходов, искусственное выращивание биомассы (водорослей, быстрорастущих деревьев) и получение биогаза. Биогаз - смесь горючих газов (примерный состав: метан - 55-65%, углекислый газ - 35-45%, примеси азота, водорода, кислорода и сероводорода), образующаяся в процессе биологического разложения биомассы или органических бытовых расходов.

Биомасса - наиболее дешевая и крупномасштабная форма аккумулирования возобновляемой энергии. Под термином "биомасса" подразумеваются любые материалы биологического происхождения, продукты жизнедеятельности и отходы органического происхождения. Биомасса будет на Земле, пока на ней существует жизнь. Ежегодный прирост органического вещества на Земле эквивалентен производству такого количества энергии, которое в десять раз больше годового потребления энергии всем человечеством на современном этапе.

Источники биомассы, характерные для нашей республики, могут быть разделены на несколько основных групп:

Продукты естественной вегетации (древесина, древесные отходы, торф, листья и т.п.).

Отходы жизнедеятельности людей, включая производственную деятельность (твердые бытовые отходы, отходы промышленного производства и др.).

Отходы сельскохозяйственного производства (навоз, куриный помет, стебли, ботва и т.д.).

Специально выращиваемые высокоурожайные агрокультуры и растения.

Переработка биомассы в топливо осуществляется по трем направлениям.

Первое: биоконверсия, или разложение органических веществ растительного или животного происхождения в анаэробных (без доступа воздуха) условиях специальными видами бактерий с образованием газообразного топлива (биогаза) и/или жидкого топлива (этанола, бутанола и т.д.

Второе: термохимическая конверсия (пиролиз, газификация, быстрый пиролиз, синтез) твердых органических веществ (дерева, торфа, угля) в "синтез-газ", метанол, искусственный бензин, древесный уголь.

Третье: сжигание отходов в котлах и печах специальных конструкций. В мире сотни миллионов тонн таких отходов сжигаются с регенерацией энергии. Прессованные брикеты из бумаги, картона, древесины, полимеров по теплотворной способности сравнимы с бурым углем.

Малая гидроэнергетика. В настоящее время признанных единых критериев причисления ГЭС к категории малых гидростанций не существует. У нас принято считать малыми гидростанции мощностью от 0,1 до 30 МВт, при этом введено ограничение по диаметру рабочего колеса гидротурбины до 2 м и по единичной мощности гидроагрегата - до 10 МВт. ГЭС установленной мощностью менее 0,1 МВт выделены в категории микро-ГЭС.

Малая гидроэнергетика в мире в настоящее время переживает третий виток в истории своего развития.

первичная энергия топливный тепловая

4. Другие виды нетрадиционной энергетики


Геотермальная энергетика - получение энергии от внутреннего тепла Земли. Различают естественную и искусственную геотермальную энергию - от природных термальных источников и от закачки в недра Земли воды, других жидкостей или газообразных веществ ("сухая" и "мокрая" геотермальная энергетика). Данный вид энергетики широко применяется для бытовых целей и отопления теплиц.

Космическая энергетика - получение солнечной энергии на специальных геостационарных спутниках Земли с узконаправленной передачей энергии на наземные приемники.

На этих спутниках солнечная энергия трансформируется в электрическую и в виде электромагнитного луча сверхвысокой частоты передается на приемные станции на Земле, где преобразуется в электрическую энергию.

Морская энергетика базируется на энергии приливов и отливов (Кислогубская ЭС на Кольском полуострове), морских течений и разности температур в различных слоях морской воды. Иногда к ней относят волновую энергетику. Пока морская энергетика малорентабельна из-за разрушающего воздействия на оборудование морской воды.

Низкотемпературная энергетика - получение энергии с использованием низкотемпературного тепла Земли, воды и воздуха, вернее разности в температурах их различных слоев.

"Холодная" энергетика - способы получения энергоносителей путем физико-химических процессов, идущих при низких температурах и сходных с происходящими в растениях.

Управляемая термоядерная реакция. Физики работают над освоением управляемой термоядерной реакции синтеза ядер тяжелого водорода с образованием гелия. При таком соединении выделяется громадное количество энергии, гораздо больше, чем при делении ядер урана.

Доказано, что основная доля энергии Солнца и звезд выделяется именно при синтезе легких элементов. Если удастся осуществить управляемую реакцию синтеза, появится неограниченный источник энергии.

Весьма перспективными являются энергетические установки, преобразующие одни виды энергии в другие нетрадиционными способами с высоким КПД.

Большой интерес уделяют непосредственному преобразованию химической энергии органического топлива в электрическую - созданию топливных элементов . Распространение получили низкотемпературные (t= 150°С) топливные элементы с жидким электролитом (концентрированные растворы серной или фосфорной кислот и щелочей КОН). Топливом в элементах служит водород, окислителем - кислород из воздуха.

Ведутся работы по созданию энергетических установок, использующих энергию гравитации, вакуума, низких температур окружающего воздуха для обогревания помещений по принципу теплового насоса ("холодильник наоборот", морозильное отделение которого помещено на улице).


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии - электрическая, которая может считаться основой цивилизации. Преобразование пер­
вичной энергии в электрическую производится на электрос­танциях: ТЭС, ГЭС, АЭС.

Примерно 70 % электроэнергии вырабатывают на ТЭС. Они делятся на конденсационные тепловые электростанции (КЭС), вырабатывающие только электроэнергию, и теплоэлек­троцентрали (ТЭЦ), которые производят электроэнергию и теплоту.

Рис. 2.2. Принципиальная схема тепловой электростанции: ПГ - парогенератор; Т - турбина; Г - генератор;

И - циркуляционный насос; К - конденсатор

В котле парогенератора ПГ при сжигании топлива выделя­ется тепловая энергия, которая преобразуется в энергию водя­ного пара. В турбине Т энергия водяного пара превращается в механическую энергию вращения. Генератор Г превращает механическую энергию вращения в электрическую. Схема ТЭЦ отличается тем, что по ней, помимо электрической энер­гии, вырабатывается и тепловая путем отвода части пара и нагрева с его помощью воды, подаваемой в тепловые магист­рали.

Есть ТЭС с газотурбинными установками. Рабочее тело в них - газ с воздухом. Газ выделяется при сгорании органи­ческого топлива и смешивается с нагретым воздухом. Газовоз­душная смесь при 750-770 °С подается в турбину, которая вращает генератор. ТЭС с газотурбинными установками более маневренна, легко пускается, останавливается, регулируется. Но их мощность в 5-8 раз меньше паровых.

Процесс производства электроэнергии на ТЭС можно разде­лить на три цикла: химический - процесс горения, в резуль­тате которого теплота передается пару; механический - теп­ловая энергия пара превращается в энергию вращения; элек­трический - механическая энергия превращается в электри­ческую.

Общий КПД ТЭС состоит из произведения КПД (ті) циклов:

Лтэс Лх"Лм"Лэ. Лх ~ Пэ ~ 90 % .

КПД идеального механического цикла определяется так называемым циклом Карно:

Где Ті и Т2 ■- температура пара на входе и выходе паровой турбины. На современных ТЭС Tt = 550 °С (823 °К), Т2 = 23 °С (296 °К).

823-296 1ЛП0/ __0/ Лм = -- 100 % = 63 %.

Г)тэс= 0,9 0,63 0,9 = 0,5 %.

Практически с учетом потерь г|тэс = 36-39 % . Из-за более полного использования тепловой энергии КПД ТЭЦ = 60-65 %.

Атомная электростанция отличается от ТЭС тем, что заменен ядерным реактором. Теплота ядерной реакции ис­пользуется для получения пара (рис. 2.3).

Рис. 2.3. Принципиальная схема атомной электростанции: 1 - реактор; 2 - парогенератор; 3 - турбина; 4 - генератор; 5 - трансформатор; 6 - электролинии

Первичной энергией на АЭС является внутренняя ядерная энергия, которая при делении ядра выделяется в виде колос­сальной кинетической энергии, которая, в свою очередь, пре­
вращается в тепловую. Установка, где идут эти превращения, называется реактором.

Через активную зону реактора проходит вещество теплоно­ситель, которое служит для отвода тепла (вода, инертные газы и т. д.). Теплоноситель уносит тепло в парогенератор, отдавая его воде. Образующийся водяной пар поступает в турбину. Ре­гулирование мощности реактора производится с помощью специальных стержней. Они вводятся в активную зону и изме­няют поток нейтронов, а значит, и интенсивность ядерной ре­акции.

Природное ядерное горючее атомной электрической стан­ции - уран. Для биологической защиты от радиации исполь­зуется слой бетона в несколько метров толщиной.

При сжигании 1 кг каменного угля можно получить 8 кВт-ч электроэнергии, а при расходе 1 кг ядерного топлива выраба­тывается 23 млн кВт-ч электроэнергии.

Более 2000 лет человечество использует водную энергию Земли. Теперь энергия воды используется на гидроэнергети­ческих установках (ГЭУ) трех видов: 1) гидравлические элек­тростанции (ГЭС); 2) приливные электростанции (ПЭС), ис­пользующие энергию приливов и отливов морей и океанов; 3) гидроаккумулирующие станции (ГАЭС), накапливающие и использующие энергию водоемов и озер.

Гидроэнергетические ресурсы в турбине ГЭУ преобразуют­ся в механическую энергию, которая в генераторе превраща­ется в электрическую.

Таким образом, основными источниками энергии являют­ся твердое топливо, нефть, газ, вода, энергия распада ядер урана и других радиоактивных веществ.

Cтраница 1


Традиционная энергетика - это совокупность технических устройств, использующих хорошо освоенные в технологическом отношении энергетические источники и способы преобразования получаемой от них энергии, в первую очередь электрическую.  

Отдавая день традиционной энергетике - угольной, газовой, нефтяной и термоядерной (к освоению которой мы уже близки), акцент необходимо сделать на экологически чистые, энергосберегающие технологии и возобновляемые источники - Солнце, ветер, водная стихия.  

Альтернативные источники энергии, Традиционная энергетика, Энергетика экологическая.  

Прибавим к этому устаревающее оборудование традиционной энергетики, отсутствие необходимой гибкости и мобильности при энергообеспечения динамического нефтегазового бизнеса, невысокие экологические показатели и не всегда высокое качество электроэнергии. Все это в совокупности заставляет нефтегазовые компании искать альтернативу и находить ее в создании собственных локальных источников энергии.  

Вместе с тем высокую озабоченность вызывают и аварии в традиционной энергетике, на объектах топливного цикла (от добычи сырья до обращения с отходами), а также на объектах с химическими технологиями.  

В последнее время ввиду возникших трудностей с финансированием крупных объектов традиционной энергетики возросло количество заказов на ГТУ-ТЭЦ малой и средней мощности. Представленные в таблице данные относятся только к газотурбинной части электростанции.  

Стремление решить эти и другие проблемы наблюдается практически с начала становления традиционной энергетики. Это стремление реализуется, во-первых, в поисках других первичных энергетических источников и, во-вторых, в разработке иных способов преобразования энергии первичных источников в электрическую. Нередко оба эти направления совмещены.  

Современная нетрадиционная энергетика - это тот резерв, который дает основания надеяться, что названные ранее проблемы традиционной энергетики могут быть решены в обозримом будущем и развитие энергетики будет продолжено с максимальной пользой для человечества.  

Годовые амортизационные отчисления на АЭС рассчитываются, как и на ТЭС, по нормам амортизации, которые являются едиными для аналогичных по устройству, функциональному назначению и условиям работы элементов основных фондов. Наряду с этим на АЭС используются устройства, не имеющие аналогов в традиционной энергетике. Для них по мере накопления опыта эксплуатации должны уточняться сроки службы и нормы амортизации. В нормах амортизации для АЭС должны получить отражение особые условия проведения капитального ремонта оборудования. По причине высокой радиоактивности некоторого оборудования и элементов их ремонт либо невозможен (их не ремонтируют, а заменяют новыми), либо связан со специальными дорогостоящими мероприятиями. Соответственно в нормах амортизации для АЭС должна повышаться реновационная составляющая HP при снижении составляющей по капитальному ремонту и модернизации НК-Р.  

Атомная энергетика в случае безаварийной работы еще более экологична, но и она загрязняет воздух такими токсичными веществами, как радиоактивный йод, радиоактивные инертные газы и аэрозоли. В то же время АЭС представляет собой значительно большую потенциальную опасность по сравнению с предприятиями традиционной энергетики.  

Сборник включает в себя работы по исследованиям в области теплофизики экстремальных состояний и физики высоких плотностей энергии. Рассматриваются различные модели уравнений состояния вещества в экстремальных условиях, некоторые задачи физики ударных и детонационных волн, методы генерации интенсивных импульсных потоков энергии, эффекты взаимодействия мощных ионных и электронных пучков, лазерного, рентгеновского и СВЧ излучения с веществом, экспериментальные методы диагностики быстрых процессов, физика низкотемпературной плазмы, проблемы управляемого термоядерного синтеза и традиционной энергетики, а также различные технологические аспекты. Издание адресовано специалистам в области физико-технических проблем энергетики.  

Безопасность нынешнего поколения реакторов обеспечивается увеличением количества различных систем безопасности и систем ограничения выхода активности, ужесточением требований к оборудованию и персоналу. В результате атомные электростанции становятся более сложными и, следовательно, более дорогостоящими. Атомная энергетика близка к своему экономически предельному уровню: дальнейшее наращивание систем безопасности ведет к снижению существующей конкурентоспособности атомной энергетики по сравнению с традиционной энергетикой.  

Технические устройства, составляющие традиционную энергетику, - это, во-первых, тепловые электростанции (ТЭС), работающие на минеральных - твердых, жидких и газообразных органических топливах (уголь, нефть, газ и др.); атомные электростанции (АЭС), работающие на ядерных топливах (уран, плутоний), получаемых из сырьевых минералов; гидравлические электростанции (ГЭС), использующие возобновляемые гидравлические энергетические ресурсы. Эти электростанции являются базовыми в современной энергетике, составляют так называемую большую энергетику. Их отличительные особенности: значительная единичная мощность, работа в общей электросети (возможна работа и в тепловой сети), единый стандарт на качество вырабатываемой электроэнергии. Во-вторых, в традиционную энергетику входят автономные газотурбинные, дизельные и другие установки, использующие ископаемые органические топлива, и автономные гидравлические установки. Эти установки составляют малую энергетику.  

В зависимости от вида первичной энергии различают тепловые электростанции (ТЭС), гидроэлектрические станции (ГЭС), атомные электростанции (АЭС) и др. К ТЭС относятся конденсационные электростанции (КЭС) и теплофикационные, или теплоэлектроцентрали (ТЭЦ).

Электростанции, обслуживающие крупные и жилые районы, получили название государственных районных электростанций (ГРЭС). В их состав, как правило, входят конденсационные электростанции, использующие органическое топливо и не вырабатывающие тепловой энергии. ТЭЦ также работают на органическом топливе, но, в отличие от КЭС, вырабатывают как электрическую, так и тепловую энергию в виде перегретой воды и пара. Атомные электростанции преимущественно конденсационного типа используют энергию ядерного топлива. В ТЭЦ, КЭС и ГРЭС потенциальная химическая энергия органического топлива (угля, нефти или газа) преобразуется в тепловую энергию водяного пара, которая, в свою очередь, переходит в электрическую. Именно так производится около 80% получаемой в мире энергии, основная часть которой на тепловых электростанциях превращается в электрическую. Атомные и возможно в будущем термоядерные электростанции также представляют собой тепловые станции. Отличие заключается в том, что топка парового котла заменяется на ядерный или термоядерный реактор.

Гидравлические электростанции (ГЭС) используют возобновляемую энергию падающего потока воды, которая преобразуется в электрическую.

ТЭС, ГЭС и АЭС - основные энергогенерирующие источники, развитие и состояние которых определяют уровень и возможности современной мировой энергетики и энергетики Украины в частности. Электростанции указанных типов называют также турбинными.

Одной из основных характеристик электростанций является установленная мощность, равная сумме номинальных мощностей электрогенераторов и теплофикационного оборудования.

Номинальная мощность - это наибольшая мощность, при которой оборудование может работать длительное время в соответствии с техническими условиями.

Из всех видов производства энергии наибольшее развитие в Украине получила теплоэнергетика как энергетика паровых турбин на органическом топливе. Удельные капитальные вложения на строительство ТЭС существенно ниже, чем для ГЭС и АЭС. Значительно короче и сроки строительства ТЭС. Что касается себестоимости вырабатываемой электроэнергии, то она ниже всего для гидростанций. Стоимость производства электроэнергии на ТЭС и АЭС отличается не очень существенно, но все-таки она ниже для АЭС. Однако эти показатели не являются определяющими для выбора того или иного типа электростанций. Многое зависит от места расположения станции. ГЭС строится на реке, ТЭС располагается обычно неподалеку от места добычи топлива. ТЭЦ желательно иметь рядом с потребителями тепловой энергии. АЭС нельзя строить вблизи населенных пунктов. Таким образом, выбор типа станций во многом зависит от их назначения и предполагаемого размещения. В последние десятилетия на себестоимость производства энергии, на выбор типа электростанции и места ее расположения решающее влияние оказывают экологические проблемы, связанные с получением и использованием энергоресурсов.

С учетом специфики размещения ТЭС, ГЭС и АЭС определяются месторасположение электростанций и условия их будущей эксплуатации: положение станций относительно центров потребления, что особенно важно для ТЭЦ; основной вид энергоресурса, на котором будет работать станция, и условия его поступления на станцию; условия водоснабжения станции, приобретающие особое значение для КЭС и АЭС. Немаловажным является близость станции к железнодорожным и другим транспортным магистралям, к населенным пунктам.


Все существующие направления энергетики можно условно разделить на зрелые, развивающиеся и находящиеся в стадии теоретической проработки. Одни технологии доступны для реализации даже в условиях частного хозяйства, а другие могут использоваться только в рамках промышленного обеспечения. Рассматривать и оценивать современные виды энергетики можно с разных позиций, однако принципиальное значение имеют универсальные критерии экономической целесообразности и производственной эффективности. Во многом по этим параметрам сегодня расходятся концепции применения традиционных и альтернативных технологий генерации энергии.

Традиционная энергетика

Это широкий пласт сформировавшихся отраслей тепло- и электроэнергетики, обеспечивающей порядка 95% мировых потребителей энергии. Генерация ресурса происходит на специальных станциях - это объекты ТЭС, ГЭС, АЭС и т. д. Они работают с готовой сырьевой базой, в процессе переработки которой происходит выработка целевой энергии. Выделяют следующие стадии производства энергии:

  • Изготовление, подготовка и доставка исходного сырья на объект выработки того или иного вида энергии. Это могут быть процессы добычи и обогащения топлива, сжигание нефтепродуктов и т. д.
  • Передача сырья к узлам и агрегатам, непосредственно преобразующим энергию.
  • Процессы из первичной во вторичную. Эти циклы присутствуют не на всех станциях, но, к примеру, для удобства доставки и последующего распределения энергии могут использоваться разные ее формы - в основном тепло и электричество.
  • Обслуживание готовой преобразованной энергии, ее передача и распределение.

На завершающем этапе ресурс отправляется конечным потребителям, в качестве которых могут выступать и отрасли народного хозяйства, и рядовые домовладельцы.

Тепловая электроэнергетика

Самая распространенная отрасль энергетики в в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя. Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными. Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Гидроэнергетика

Гидротехнические сооружения в виде энергетических подстанций предназначены для выработки электричества в результате преобразования энергии потока воды. То есть, технологический процесс генерации обеспечивается сочетанием искусственных и природных явлений. В ходе работы станция создает достаточный напор воды, которая в дальнейшем направляется к турбинным лопастям и активизирует электрогенераторы. Гидрологические виды энергетики различаются по типу используемых агрегатов, конфигурации взаимодействия оборудования с естественными потоками воды и т. д. По рабочим показателям можно выделить следующие разновидности гидростанций:

  • Малые - вырабатывают до 5 МВт.
  • Средние - до 25 МВт.
  • Мощные - более 25 МВт.

Также применяется классификация в зависимости от силы напора воды:

  • Низконапорные станции - до 25 м.
  • Средненапорные - от 25 м.
  • Высоконапорные - выше 60 м.

К достоинствам гидроэлектростанций относят экологическую чистоту, экономическую доступность (бесплатная энергия), неисчерпаемость рабочего ресурса. В то же время гидротехнические сооружения требуют больших начальных затрат на техническую организацию аккумулирующей инфраструктуры, а также имеют ограничения по географическому размещению станций - только там, где реки обеспечивают достаточный напор воды.

В некотором смысле это подвид тепловой энергетики, но практически производственные показатели работы ядерных станций на порядок выше ТЭС. В России используют полные циклы выработки атомной электроэнергии, что позволяет генерировать большие объемы энергетического ресурса, но имеют место и огромные риски использования технологий обработки урановой руды. Обсуждением вопросов безопасности и популяризации задач данной отрасли, в частности, занимается АНО «Информационный центр атомной энергетики», имеющий представительства в 17 регионах России.

Ключевую роль в исполнении процессов генерации ядерной энергии играет реактор. Это агрегат, предназначенный для поддержания реакций деления атомов, которые, в свою очередь, сопровождаются выделением тепловой энергии. Существуют разные типы реакторов, отличающиеся применяемым видом топлива и теплоносителем. Чаще используется конфигурация с легководным реактором, использующим в качестве теплоносителя обычную воду. Основным ресурсом переработки в энергетике выступает урановая руда. По этой причине АЭС обычно проектируются с расчетом на размещение реакторов вблизи от месторождений урана. На сегодняшний день в России действует 37 реакторов, совокупная мощность выработки которых составляет около 190 млрд кВт*ч/год.

Характеристика альтернативной энергетики

Практически все источники альтернативной энергии выгодно отличаются финансовой доступностью и экологической чистотой. По сути, в данном случае происходит замена перерабатываемого ресурса (нефти, газа, угля и т. д.) на природную энергию. Это может быть солнечный свет, потоки ветра, тепло земли и другие естественные источники энергии за исключением гидрологических ресурсов, которые сегодня рассматриваются как традиционные. Концепции альтернативной энергетики существуют давно, однако по сей день они занимают небольшую долю в общем мировом энергообеспечении. Задержки в развитии данных отраслей связаны с проблемами технологической организации процессов выработки электричества.

Но чем обусловлено активное развитие альтернативной энергетики в наши дни? В немалой степени необходимостью снижения темпов загрязнения окружающей среды и в целом проблемами экологии. Также в скором будущем человечество может столкнуться с истощением традиционных ресурсов, используемых в производстве энергии. Поэтому, даже несмотря на организационные и экономические препятствия, все больше внимания уделяется проектам развития альтернативных форм энергетики.

Геотермальная энергетика

Один из самых распространенных в бытовых условиях. Геотермальная энергия вырабатывается в процессе аккумуляции, передачи и преобразования внутреннего тепла Земли. В промышленных масштабах обслуживаются подземные породы на глубинах до 2-3 км, где температура может превышать 100°С. Что касается индивидуального применения геотермальных систем, то чаще задействуются поверхностные аккумуляторы, располагаемые не в скважинах на глубине, а горизонтально. В отличие от других подходов к выработке альтернативной энергии, практически все геотермальные виды энергетики в производственном цикле обходятся без этапа преобразования. То есть первичная тепловая энергия в этой же форме и поставляется конечному потребителю. Поэтому используется такое понятие, как геотермальные системы отопления.

Солнечная энергетика

Одна из старейших концепций альтернативной энергетики, задействующая в качестве аккумулятивного оборудования фотоэлектрические и термодинамические системы. Для реализации фотоэлектрического метода генерации используют преобразователи энергии световых фотонов (квантов) в электричество. Термодинамические установки более функциональны и за счет солнечных потоков могут вырабатывать как тепло с электричеством, так и механическую энергию для создания приводного усилия.

Схемы достаточно простые, но есть немало проблем при эксплуатации такого оборудования. Связано это с тем, что солнечная энергетика в принципе характеризуется целым рядом особенностей: нестабильностью из-за суточных и сезонных колебаний, зависимостью от погоды, низкой плотностью потоков света. Поэтому на этапе проектирования солнечных батарей и аккумуляторов много внимания уделяется исследованию метеорологических факторов.

Волновая энергетика

Процесс выработки электричества из волн происходит в результате преобразования энергии прилива. В основе большинства электростанций такого типа находится бассейн, который организуется или в ходе отделения устья реки, или за счет перекрытия залива плотиной. В образованном барьере устраиваются водопропускные отверстия с гидротурбинами. По мере изменения уровня воды во время приливов происходит вращения турбинных лопастей, что и способствует выработке электричества. Отчасти этот вид энергетики схож с но сама механика взаимодействия с водным ресурсом имеет существенные отличия. Волновые станции могут использоваться на побережьях морей и океанов, где уровень воды поднимается до 4 м, позволяя вырабатывать мощность до 80 кВт/м. Недостаток таких сооружений связан с тем, что водопропускные сооружения нарушают обмен пресной и морской воды, а это негативно сказывается на жизни морских организмов.

Еще один доступный для применения в частном хозяйстве способ получения электричества, отличающийся технологической простотой и экономической доступностью. В качестве обрабатываемого ресурса выступает кинетическая энергия воздушных масс, а роль аккумулятора выполняет двигатель с вращающимися лопастями. Обычно в ветровой энергетике применяют генераторы электрического тока, которые активизируются в результате вращения вертикальных или горизонтальных роторов с пропеллерами. Средняя бытовая станция такого типа способна генерировать 2-3 кВт.

Энергетические технологии будущего

По оценкам экспертов, к 2100 г совокупная доля угля и нефти в мировом балансе составит около 3%, что должно отодвинуть термоядерную энергетику на роль второстепенного источника энергетических ресурсов. На первое же место должны встать солнечные станции, а также новые концепции преобразования космической энергии, основанной на беспроводных каналах передачи. Процессы становления должны начаться уже к 2030 г., когда наступит период отказа от углеводородных источников топлива и перехода к «чистым» и возобновляемым ресурсам.

Перспективы российской энергетики

Будущее отечественной энергетики преимущественно связывается с развитием традиционных способов преобразования природных ресурсов. Ключевое место в отрасли должна будет занять ядерная энергетика, но в комбинированном варианте. Инфраструктуру атомных станций должны будут дополнять элементы гидротехники и средства переработки экологически чистого биотоплива. Не последнее место в возможных перспективах развития отводится и солнечным батареям. В России и сегодня этот сегмент предлагает немало привлекательных идей - в частности, панели, которые могут работать даже в зимнее время. Аккумуляторы преобразуют энергию света как такового даже без тепловой нагрузки.

Заключение

Современные обеспечения ставят крупнейшие государства перед выбором между мощностью и экологической чистотой выработки тепла и электричества. Большинство освоенных альтернативных источников энергии при всех своих плюсах не способны в полной мере заменить традиционные ресурсы, которые, в свою очередь, могут использоваться еще несколько десятилетий. Поэтому энергию будущего многие специалисты представляют как некий симбиоз различных концепций генерации энергоресурсов. Причем новые технологии ожидаются не только на промышленном уровне, но и в бытовом хозяйстве. В этой связи можно отметить градиент-температурные и биомассовые принципы энергетической выработки.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!