Женский журнал Ladyblue

Внутренняя энергия вещества формула. Расчет изменения внутренней энергии

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек ) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп ), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U . Единицей внутренней энергии является 1 джоуль (1 Дж ). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутреннюю энергию можно изменить при совершении работы . Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи , о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Внутренняя энергия - это энергия движения и взаимодействия молекул .

Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.

При остановке тела механическое движение прекращается, но зато усиливается беспорядочное (тепловое) движение его молекул. Механическая энергия превращается во внутреннюю энергию тела

Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов.

Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Если рассматривать кинетическую и потенциальную энергию одной молекулы, то это очень маленькая величина, ведь масса молекулы мала. Поскольку в теле содержится множество молекул, то внутренняя энергия тела, равная сумме энергий всех молекул, будет велика.

Способы изменения внутренней энергии

При повышении температуры внутренняя энергия тела увеличивается, так как увеличивается средняя скорость движения молекул этого тела. С понижением температуры, наоборот, внутренняя энергия тела уменьшается.

Опыт: если нагреть бутылку с резиновой пробкой, то пробка через некоторое время вылетит.

Таким образом, внутренняя энергия тела меняется при изменении скорости движения молекул.

Внутреннюю энергию можно изменить двумя способами:

1) совершая механическую работу. Внутренняя энергия увеличивается, если над телом совершают работу, а уменьшается, если тело совершает работу.

2) путем теплопередачи (теплопроводностью, конвекцией, излучением). Если тело отдаёт тепло, то внутренняя энергия уменьшается, а если принимает тепло, то она увеличивается.

Виды теплопередачи. Опыты, иллюстрирующие виды теплопередачи. Теплопередача в природе, технике, механике.

Теплообмен (теплопередача) - это процесс изменения внутренней энергии, происходящий без совершения работы.

1)

Теплопроводность - вид теплопередачи, при котором энергия передается от одного тела к другому при соприкосновении или от одной его части к другой. Разные вещества имеют разную теплопроводность. Теплопроводность у металлов большая, у жидкостей - меньше, у газов - низкая. При теплопроводности не происходит переноса вещества.

2) Конвекция - вид теплопередачи, при котором энергия переносится струями газа и жидкости. Существует два вида конвекции: естественная и вынужденная. В твердых телах конвекции нет, так как их частицы не обладают большой подвижностью. Много проявлений конвекции можно обнаружить в природе и жизни человека. Конвекция также находит применение в технике.


3) Излучение - вид теплопередачи, при котором энергия переносится электромагнитными волнами. Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. Это используется на практике.

* При теплообмене кол-во отданной теплоты равно по модулю кол-ву полученной теплоты, или их сумма равно нулю. Это называется уровнем теплового баланса.

Любое макроскопическое тело имеет энер-гию , обусловленную его микросостоянием. Эта энергия называется внутренней (обо-значается U ). Она равняется энергии дви-жения и взаимодействия микрочастиц, из которых состоит тело. Так, внутренняя энер-гия идеального газа состоит из кинетической энергии всех его молекул, поскольку их вза-имодействием в данном случае можно пре-небречь. Поэтому его внутренняя энергия за-висит лишь от температуры газа (U ~ T ).

Модель идеального газа пре-дусматривает, что молекулы на-ходятся на расстоянии несколь-ких диаметров друг от друга. Поэтому энергия их взаимо-действия намного меньше энер-гии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия. Их внутренняя энергия, кроме температуры T, будет за-висеть также от объема V, поскольку изме-нение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодей-ствия между собой.

Внутренняя энергия — это функция состояния тела, которая опреде-ляется его температурой T и объемом V.

Внутренняя энергия однознач-но определяется температурой T и объемом тела V, характе-ризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию те-ла, нужно фактически изменить или кинетическую энергию теплового движения мик-рочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вслед-ствие выполнения работы. В первом случае это происходит за счет передачи опреде-ленного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изме-нения внутренней энергии тела :

Δ U = Q + A.

Изменение внутренней энер-гии происходит за счет отдан-ного или полученного телом не-которого количества теплоты или вследствие выполнения ра-боты.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: Δ U = Q. При нагрева-нии или охлаждении тела оно равно:

Δ U = Q = cm(T 2 — Т 1) = cm ΔT.

При плавлении или кристаллизации твер-дых тел внутренняя энергия изменяется за счет изменения потенциальной энергии вза-имодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энер-гии равняется теплоте плавления (кристал-лизации) тела: ΔU — Q пл = λ m, где λ — удель-ная теплота плавления (кристаллизации) твер-дого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии , которая равна теплоте парообра-зования: Δ U = Q п = rm, где r — удельная теп-лота парообразования (конденсации) жидко-сти.

Изменение внутренней энергии тела вслед-ствие выполнения механической работы (без теплообмена) численно равно значению этой работы: Δ U = A.

Если изменение внутренней энергии происходит вследст-вие теплообмена, то Δ U = Q = cm(T 2 — T 1), или Δ U = Q пл = λ m, или Δ U = Q п = rm.

Следовательно, с точки зрения моле-кулярной физики: Материал с сайта

Внутренняя энергия тела является суммой кинетической энергии теп-лового движения атомов, молекул или других частиц, из которых оно состоит, и потен-циальной энергии взаимодействия между ни-ми; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объе-мом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микро-частиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаи-модействия. Полное значение внутренней энергии определить практически невоз-можно, поэтому вычисляют изменение внут-ренней энергии Δ U, которое происходит вследствие теплопередачи и выполнения ра-боты.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потен-циальной энергии взаимодей-ствия составляющих его мик-рочастиц.

На этой странице материал по темам:

  • Какие макропараметры определяют энергию внутренюю энергию тела

  • Каким образом можно изменить внутреннюю энергию тела ответ

  • Определения теплового движения и внутренней энергии

  • Наряду с механической энергией, любое тело (или система) обладает внутренней энергией. Внутренняя энергия – энергия покоя. Она складывается из теплового хаотического движения молекул, составляющих тело, потенциальной энергии их взаимного расположения, кинетической и потенциальной энергии электронов в атомах, нуклонов в ядрах и так далее.

    В термодинамике важно знать не абсолютное значение внутренней энергии, а её изменение.

    В термодинамических процессах изменяется только кинетическая энергия движущихся молекул (тепловой энергии недостаточно, чтобы изменить строение атома, а тем более ядра). Следовательно, фактически под внутренней энергией в термодинамике подразумевают энергию теплового хаотического движения молекул.

    Внутренняя энергия U одного моля идеального газа равна:

    Таким образом, внутренняя энергия зависит только от температуры. Внутренняя энергия U является функцией состояния системы, независимо от предыстории.

    Понятно, что в общем случае термодинамическая система может обладать как внутренней, так и механической энергией, и разные системы могут обмениваться этими видами энергии.

    Обмен механической энергией характеризуется совершенной работой А, а обмен внутренней энергией – количеством переданного тепла Q.

    Например, зимой вы бросили в снег горячий камень. За счёт запаса потенциальной энергии совершена механическая работа по смятию снега, а за счёт запаса внутренней энергии снег был растоплен. Если же камень был холодный, т.е. температура камня равна температуре среды, то будет совершена только работа, но не будет обмена внутренней энергией.

    Итак, работа и теплота не есть особые формы энергии. Нельзя говорить о запасе теплоты или работы. Это мера переданной другой системе механической или внутренней энергии. Вот о запасе этих энергий можно говорить. Кроме того, механическая энергия может переходить в тепловую энергию и обратно. Например, если стучать молотком по наковальне, то через некоторое время молоток и наковальня нагреются (это пример диссипации энергии).

    Можно привести ещё массу примеров превращения одной формы энергии в другую.

    Опыт показывает, что во всех случаях, превращение механической энергии в тепловую и обратно совершается всегда в строго эквивалентных количествах. В этом и состоит суть первого начала термодинамики, следующего из закона сохранения энергии.

    Количество теплоты, сообщаемой телу, идёт на увеличение внутренней энергии и на совершение телом работы:

    , (4.1.1)

    – это и есть первое начало термодинамики , или закон сохранения энергии в термодинамике.

    Правило знаков: если тепло передаётся от окружающей среды данной системе, и если система производит работу над окружающими телами, при этом . Учитывая правило знаков, первое начало термодинамики можно записать в виде:

    В этом выражении U – функция состояния системы; dU – её полный дифференциал, а δQ и δА таковыми не являются. В каждом состоянии система обладает определенным и только таким значением внутренней энергии, поэтому можно записать:

    ,

    Важно отметить, что теплота Q и работа А зависят от того, каким образом совершен переход из состояния 1 в состояние 2 (изохорически, адиабатически и т.д.), а внутренняя энергия U не зависит. При этом нельзя сказать, что система обладает определенным для данного состояния значением теплоты и работы.

    Из формулы (4.1.2) следует, что количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях (Дж).

    Особое значение в термодинамике имеют круговые или циклические процессы, при которых система, пройдя ряд состояний, возвращается в исходное. На рисунке 4.1 изображен циклический процесс 1–а –2–б –1, при этом была совершена работа А.


    Рис. 4.1

    Так как U – функция состояния, то

    (4.1.3)

    Это справедливо для любой функции состояния.

    Если то согласно первому началу термодинамики , т.е. нельзя построить периодически действующий двигатель, который совершал бы бóльшую работу, чем количество сообщенной ему извне энергии. Иными словами, вечный двигатель первого рода невозможен. Это одна из формулировок первого начала термодинамики.

    Следует отметить, что первое начало термодинамики не указывает, в каком направлении идут процессы изменения состояния, что является одним из его недостатков.

    «Физика - 10 класс»

    Тепловые явления можно описывать с помощью величин (макроскопических параметров), измеряемых такими приборами, как манометр и термометр. Эти приборы не реагируют на воздействие отдельных молекул. Теория тепловых процессов, в которой не учитывается молекулярное строение тел, называется термодинамикой . В термодинамике рассматриваются процессы с точки зрения превращения теплоты в другие виды энергии.

    Что такое внутренняя энергия.
    Какие способы изменения внутренней энергии вы знаете?

    Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В её основе лежит понятие внутренняя энергия . Само название «внутренняя» предполагает рассмотрение системы как ансамбля движущихся и взаимодействующих молекул. Остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией.


    Термодинамика и статистическая механика.


    Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика.

    Термодинамика возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание. Тогда же было доказано, что наряду с механической энергией макроскопические тела обладают ещё и энергией, заключённой внутри самих тел.

    Сейчас в науке и технике при изучении тепловых явлений используется как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют статистической механикой

    Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.

    Термодинамической системой называют совокупность взаимодействующих тел, обменивающихся энергией и веществом.


    Внутренняя энергия в молекулярно-кинетической теории.


    Основным понятием в термодинамике является понятие внутренней энергии.

    Внутренняя энергия тела (системы) - это сумма кинетической энергии хаотичного теплового движения молекул и потенциальной энергии их взаимодействия.

    Механическая энергия тела (системы) как целого не входит во внутреннюю энергию. Например, внутренняя энергия газов в двух одинаковых сосудах при равных условиях одинакова независимо от движения сосудов и их расположения относительно друг друга.

    Вычислить внутреннюю энергию тела (или её изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или её изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.


    Внутренняя энергия идеального одноатомного газа.


    Вычислим внутреннюю энергию идеального одноатомного газа.

    Согласно модели молекулы идеального газа не взаимодействуют друг с другом, следовательно, потенциальная энергия их взаимодействия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.

    Для вычисления внутренней энергии идеального одноатомного газа массой т нужно умножить среднюю кинетическую энергию одного атома на число атомов. Учитывая, что kN A = R, получим формулу для внутренней энергии идеального газа:

    Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре.

    Она не зависит от объёма и других макроскопических параметров системы.

    Изменение внутренней энергии идеального газа

    т. е. определяется температурами начального и конечного состояний газа и не зависит от процесса.

    Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между U и Т другой. Объясняется это тем, что сложные молекулы не только движутся поступательно, но ещё и вращаются и колеблются относительно своих положений равновесия. Внутренняя энергия таких газов равна сумме энергий поступательного, вращательного и колебательного движений молекул. Следовательно, внутренняя энергия многоатомного газа больше энергии одноатомного газа при той же температуре.


    Зависимость внутренней энергии от макроскопических параметров.


    Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры.

    У реальных газов, жидкостей и твёрдых тел средняя потенциальная энергия взаимодействия молекул не равна нулю . Правда, для газов она много меньше средней кинетической энергии молекул, но для твёрдых и жидких тел сравнима с ней.

    Средняя потенциальная энергия взаимодействия молекул газа зависит от объёма вещества, так как при изменении объёма меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит наряду с температурой T и от объёма V.

    Можно ли утверждать, что внутренняя энергия реального газа зависит от давления, основываясь на том, что давление можно выразить через температуру и объём газа.

    Значения макроскопических параметров (температуры Т объёма V и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.

    Внутренняя энергия U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объёмом.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!