Женский журнал Ladyblue

Вывод потенциальной энергии. Что такое потенциальная энергия

Повседневный опыт показывает, что недвижимые тела можно привести в движение, а движимые остановить. Мы с вами постоянно что-то делаем, мир вокруг суетится, светит солнце... Но откуда у человека, животных, да и у природы в целом берутся силы для выполнения этой работы? Исчезает ли бесследно? Начнет ли двигаться одно тело без изменения движения другого? Обо всем этом мы расскажем в нашей статье.

Понятие энергии

Для работы двигателей, которые придают движение автомобилям, тракторам, тепловозам, самолетам, нужно топливо, которое является источником энергии. Электродвигатели придают движение станкам при помощи электроэнергии. За счет энергии воды, падающей с высоты, оборачиваются гидротурбины, соединенные с электрическими машинами, производящими электрический ток. Человеку для того, чтобы существовать и работать, также нужна энергия. Говорят, что для того, дабы выполнять какую-нибудь работу, необходима энергия. Что же такое энергия?

  • Наблюдение 1. Поднимем над землей мяч. Пока он пребывает в состоянии спокойствия, механическая работа не выполняется. Отпустим его. Под действием силы тяжести мяч падает на землю с определенной высоты. Во время падения мяча выполняется механическая работа.
  • Наблюдение 2. Сомкнем пружину, зафиксируем ее нитью и поставим на пружину гирьку. Подожжем нить, пружина распрямится и поднимет гирьку на некую высоту. Пружина выполнила механическую работу.
  • Наблюдение 3. На тележку закрепим стержень с блоком в конце. Через блок перекинем нить, один конец которой намотан на ось тележки, а на другом висит грузик. Отпустим грузик. Под действием он будет опускаться книзу и придаст тележке движение. Грузик выполнил механическую работу.

После анализа всех вышеперечисленных наблюдений можно сделать вывод, что если тело или несколько тел во время взаимодействия выполняют механическую работу, то говорят, что они имеют механическую энергию, либо энергию.

Понятие энергии

Энергия (от греч. слова энергия - деятельность) - это физическая величина, которая характеризирует способность тел выполнять работу. Единицей энергии, а также и работы в системе СИ является один Джоуль (1 Дж). На письме энергия обозначается буквой Е . Из вышеуказанных экспериментов видно, что тело выполняет работу тогда, когда переходит из одного состояния в другое. Энергия тела при этом меняется (уменьшается), а выполненная телом механическая работа равна результату изменения ее механической энергии.

Виды механической энергии. Понятие потенциальной энергии

Различают 2 вида механической энергии: потенциальную и кинетическую. Сейчас подробнее рассмотрим потенциальную энергию.

Потенциальная энергия (ПЭ) - определяющаяся взаимным положением тел, которые взаимодействуют, либо частями того самого тела. Поскольку любое тело и земля притягивают друг друга, то есть взаимодействуют, ПЭ тела, поднятого над землей, будет зависеть от высоты поднятия h . Чем выше поднято тело, тем больше его ПЭ. Экспериментально установлено, что ПЭ зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела были подняты на одинаковую высоту, то тело, имеющее большую массу, будет иметь и большую ПЭ. Формула данной энергии выглядит следующим образом: E п = mgh, где E п - это потенциальна энергия, m - масса тела, g = 9,81 Н/кг, h - высота.

Потенциальная энергия пружины

Потенциальной энергией упруго деформированного тела называют физическую величину E п, которая при изменении скорости поступательного движения под действием уменьшается ровно на столько, на сколько растет кинетическая энергия. Пружины (как и другие упруго деформированные тела) имеют такую ПЭ, которая равна половине произведения их жесткости k на квадрат деформации: x = kx 2: 2.

Энергия кинетическая: формула и определение

Иногда значение механической работы можно рассматривать без употребления понятий силы и перемещения, акцентировав внимание на том, что работа характеризует изменение энергии тела. Все, что нам может потребоваться, - это масса некоего тела и его начальная и конечная скорости, что приведет нас к кинетической энергии. Кинетическая энергия (КЭ) - это энергия, принадлежащая телу вследствие собственного движения.

Кинетическую энергию имеет ветер, ее используют для придания движения ветряным двигателям. Движимые оказывают давление на наклонные плоскости крыльев ветряных двигателей и заставляют их оборачиваться. Вращательное движение при помощи систем передач передается механизмам, выполняющим определенную работу. Движимая вода, оборачивающая турбины электростанции, теряет часть своей КЭ, выполняя работу. Летящий высоко в небе самолет, помимо ПЭ, имеет КЭ. Если тело пребывает в состоянии покоя, то есть его скорость относительно Земли равна нулю, то и его КЭ относительно Земли равна нулю. Экспериментально установлено, что чем больше масса тела и скорость, с которой оно движется, тем больше его КЭ. Формула кинетической энергии поступательного движения в математическом выражении следующая:

Где К - кинетическая энергия, m - масса тела, v - скорость.

Изменение кинетической энергии

Поскольку скорость движения тела является величиной, зависящей от выбора системы отсчета, значение КЭ тела также зависит от ее выбора. Изменение кинетической энергии (ИКЭ) тела происходит вследствие действия на тело внешней силы F . Физическую величину А , которая равна ИКЭ ΔЕ к тела вследствие действия на него силы F, называют работой: А = ΔЕ к. Если на тело, которое движется со скоростью v 1 , действует сила F , совпадающая с направлением, то скорость движения тела вырастет за промежуток времени t к некоторому значению v 2 . При этом ИКЭ равно:

Где m - масса тела; d - пройденный путь тела; V f1 = (V 2 - V 1); V f2 = (V 2 + V 1); a = F: m . Именно по этой формуле высчитывается, на сколько изменяется энергия кинетическая. Формула также может иметь следующую интерпретацию: ΔЕ к = Flcos , где cosά является углом между векторами силы F и скорости V .

Средняя кинетическая энергия

Кинетическая энергия представляет собой энергию, определяемую скоростью движения разных точек, которые принадлежат этой системе. Однако следует помнить, что необходимо различать 2 энергии, характеризующие разные поступательное и вращательное. (СКЭ) при этом является средней разностью между совокупностью энергий всей системы и ее энергией спокойствия, то есть, по сути, ее величина - это средняя величина потенциальной энергии. Формула средней кинетической энергии следующая:

где k - это константа Больцмана; Т - температура. Именно это уравнение является основой молекулярно-кинетической теории.

Средняя кинетическая энергия молекул газа

Многочисленными опытами было установлено, что средняя кинетическая энергия молекул газа в поступательном движении при заданной температуре одна и та же, и не зависит от рода газа. Кроме того, было установлено также, что при нагревании газа на 1 о С СКЭ увеличивается на одно и то же самое значение. Сказать точнее, это значение равно: ΔЕ к = 2,07 х 10 -23 Дж/ о С. Для того чтобы вычислить, чему равна средняя кинетическая энергия молекул газа в поступательном движении, необходимо, помимо этой относительной величины, знать еще хотя бы одно абсолютное значение энергии поступательного движения. В физике достаточно точно определены эти значения для широкого спектра температур. К примеру, при температуре t = 500 о С кинетическая энергия поступательного движения молекулы Ек = 1600 х 10 -23 Дж. Зная 2 величины (ΔЕ к и Е к), мы можем как вычислить энергию поступательного движения молекул при заданной температуре, так и решить обратную задачу - определить температуру по заданным значениям энергии.

Напоследок можно сделать вывод, что средняя кинетическая энергия молекул, формулакоторой приведена выше, зависит только от абсолютной температуры (причем для любого агрегатного состояния веществ).

Закон сохранения полной механической энергии

Изучение движения тел под действием силы тяжести и сил упругости показало, что существует некая физическая величина, которую называют потенциальной энергией Е п ; она зависит от координат тела, а ее изменение приравнивается ИКЭ, которая взята с противоположным знаком: Δ Е п = -ΔЕ к. Итак, сумма изменений КЭ и ПЭ тела, которые взаимодействуют с гравитационными силами и силами упругости, равна 0 : Δ Е п + ΔЕ к = 0. Силы, которые зависят только от координат тела, называют консервативными. Силы притяжения и упругости являются консервативными силами. Сумма кинетической и потенциальной энергий тела является полной механической энергией: Е п + Е к = Е.

Этот факт, который был доказан наиболее точными экспериментами,
называют законом сохранения механической энергии . Если тела взаимодействуют силами, которые зависят от скорости относительного движения, механическая энергия в системе взаимодействующих тел не сохраняется. Примером сил такого типа, которые называются неконсервативными , являются силы трения. Если на тело действуют силы трения, то для их преодоления необходимо затратить энергию, то есть ее часть используется на выполнение работы против сил трения. Однако нарушение закона сохранения энергии здесь только мнимое, потому что он является отдельным случаем общего закона сохранения и преобразования энергии. Энергия тел никогда не исчезает и не появляется вновь: она лишь преобразуется из одного вида в другой. Этот закон природы очень важен, он выполняется повсюду. Его еще иногда называют общим законом сохранения и преобразования энергии.

Связь между внутренней энергией тела, кинетической и потенциальной энергиями

Внутренняя энергия (U) тела - это его полная энергия тела за вычетом КЭ тела как целого и его ПЭ во внешнем поле сил. Из этого можно сделать вывод, что внутренняя энергия состоит из КЭ хаотического движения молекул, ПЭ взаимодействия между ними и внутремолекулярной энергии. Внутренняя энергия - это однозначная функция состояния системы, что говорит о следующем: если система находится в данном состоянии, ее внутренняя энергия принимает присущие ему значения, независимо от того, что происходило ранее.

Релятивизм

Когда скорость тела близка к скорости света, кинетическую энергию находят по следующей формуле:

Кинетическая энергия тела, формула которой была написана выше, может также рассчитываться по такому принципу:

Примеры задач по нахождению кинетической энергии

1. Сравните кинетическую энергию шарика массой 9 г, летящего со скоростью 300 м/с, и человека массой 60 кг, бегущего со скоростью 18 км/час.

Итак, что нам дано: m 1 = 0,009 кг; V 1 = 300 м/с; m 2 = 60 кг, V 2 = 5 м/с.

Решение:

  • Энергия кинетическая (формула): Е к = mv 2: 2.
  • Имеем все данные для расчета, а поэтому найдем Е к и для человека, и для шарика.
  • Е к1 = (0,009 кг х (300 м/с) 2) : 2 = 405 Дж;
  • Е к2 = (60 кг х (5 м/с) 2) : 2= 750 Дж.
  • Е к1 < Е к2.

Ответ: кинетическая энергия шарика меньше, чем человека.

2. Тело с массой 10 кг было поднято на высоту 10 м, после чего его отпустили. Какую КЭ оно будет иметь на высоте 5 м? Сопротивлением воздуха разрешается пренебречь.

Итак, что нам дано: m = 10 кг; h = 10 м; h 1 = 5 м; g = 9,81 Н/кг. Е к1 - ?

Решение:

  • Тело определенной массы, поднятое на некую высоту, имеет потенциальную энергию: E п = mgh. Если тело падает, то оно на некоторой высоте h 1 будет иметь пот. энергию E п = mgh 1 и кин. энергию Е к1. Чтобы была правильно найдена энергия кинетическая, формула, которая была приведена выше, не поможет, а поэтому решим задачу по нижеследующему алгоритму.
  • В этом шаге используем закон сохранения энергии и запишем: Е п1 + Е к1 = Е п.
  • Тогда Е к1 = Е п - Е п1 = mgh - mgh 1 = mg(h-h 1).
  • Подставив наши значения в формулу, получим: Е к1 = 10 х 9,81(10-5) = 490,5 Дж.

Ответ: Е к1 = 490,5 Дж.

3. Маховик, имеющий массу m и радиус R, оборачивается вокруг оси, проходящей через его центр. Угловая скорость оборачивания маховика - ω . Дабы остановить маховик, к его ободу прижимают тормозную колодку, действующей на него с силой F трения . Сколько оборотов сделает маховик до полной остановки? Учесть, что масса маховика сосредоточена по ободу.

Итак, что нам дано: m; R; ω; F трения. N - ?

Решение:

  • При решении задачи будем считать обороты маховика подобными оборотам тонкого однородного обруча с радиусом R и массой m, который оборачивается с угловой скоростью ω.
  • Кинетическая энергия такого тела равна: Е к = (Jω 2) : 2, где J = mR 2 .
  • Маховик остановится при условии, что вся его КЭ истратится на работу по преодолению силы трения F трения, возникающей между тормозной колодкой и ободом: Е к = F трения *s , где s - 2 πRN = (mR 2 ω 2) : 2, откуда N = (mω 2 R) : (4πF тр).

Ответ: N = (mω 2 R) : (4πF тр).

В заключение

Энергия - это важнейшая составляющая во всех аспектах жизни, ведь без нее никакие тела не смогли бы выполнять работу, в том числе и человек. Думаем, статья вам внятно дала понять, что собой представляет энергия, а развернутое изложение всех аспектов одной из ее составляющих - кинетической энергии - поможет вам осознать многие процессы, происходящих на нашей планете. А уж о том, как найти кинетическую энергию, вы можете узнать из приведенных выше формул и примеров решения задач.

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает рабо­ту, а энергия движущегося тела возраста­ет на величину затраченной работы. Таким образом, работа dA силы F на пути, кото­рый тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равен­ства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущее­ся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинети­ческая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее дви­жения.

При выводе формулы (12.1) предпола­галось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать за­коны Ньютона. В разных инерциальных системах отсчета, движущихся друг отно­сительно друга, скорость тела, а следова­тельно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетиче­ская энергия зависит от выбора системы отсчета.

Потенциальная энергия - механиче­ская энергия системы тел, определяемая их взаимным расположением и характе­ром сил взаимодействия между ними.

Пусть взаимодействие тел осуществля­ется посредством силовых полей (напри­мер, поля упругих сил, поля гравитацион­ных сил), характеризующихся тем, что работа, совершаемая действующими сила­ми при перемещении тела из одного поло­жения в другое, не зависит от того, по какой траектории это перемещение прои­зошло, а зависит только от начального и конечного положений. Такие поля на­зываются потенциальными, а силы, дей­ствующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является си­ла трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элемен­тарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной по­стоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциаль­ную энергию тела в каком-то определен­ном положении считают равной нулю (вы­бирают нулевой уровень отсчета), а энер­гию тела в других положениях отсчитыва­ют относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координат­ных осей). Вектор, определяемый выраже­нием (12.5), называется градиентом ска­ляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называе­мый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, по­тенциальная энергия тела массой т, под­нятого на высоту h над поверхностью Зем­ли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (ки­нетическая энергия всегда положитель­на!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна дефор­мации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус ука­зывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, дефор­мирующая сила равна по модулю силе упругости и противоположно ей направле­на, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подо­бно кинетической энергии, является функ­цией состояния системы. Она зависит толь­ко от конфигурации системы и ее положе­ния по отношению к внешним телам.

Полная механическая энергия систе­мы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потен­циальной энергий.

Любое тело всегда обладает энергией. При наличии движения это очевидно: есть скорость либо ускорение, что, помноженное на массу, дает искомый результат. Однако в случае, когда тело неподвижно, оно, как ни парадоксально, также может быть охарактеризовано как обладающее энергией.

Итак, возникает при движении, потенциальная - при взаимодействии нескольких тел. Если с первой все более-менее очевидно, то нередко сила, возникающая между двумя неподвижными объектами, остается за гранью понимания.

Общеизвестно, что планета Земля воздействует на все тела, находящиеся на ее поверхности за счет То есть она притягивает любой предмет с определенной силой. При перемещении предмета, изменении его высоты, происходит также изменение показателей энергии. Непосредственно в момент поднятия тело обладает ускорением. Однако в высшей своей точке, когда предмет (пусть даже на долю секунды) неподвижен, он обладает потенциальной энергией. Все дело в том, что его по-прежнему тянет к себе поле Земли, с которым искомое тело взаимодействует.

Говоря иначе, потенциальная энергия возникает всегда за счет взаимодействия нескольких предметов, образующих систему, вне зависимости от размеров самих предметов. При этом по умолчанию один из них представлен нашей планетой.

Потенциальная энергия - величина, зависящая от массы предмета и высоты, на которую он поднят. Международное обозначение - латинские буквы Ep. выглядит следующим образом:

Где m - масса, g - ускорение h - высота.

Важно рассмотреть более подробно параметр высоты, поскольку он нередко становится причиной затруднений при решении задач и понимании значения рассматриваемой величины. Дело в том, что любое вертикальное передвижение тела имеет свою начальную и конечную точку. Для корректного нахождения потенциальной энергии взаимодействия тел важно знать начальную высоту. Если она не указана, то ее значение равняется нулю, то есть совпадает с поверхностью Земли. В случае же, если известна как начальная точка отсчета, так и конечная высота, необходимо найти разницу между ними. Получившееся число и станет искомым h.

Важно также отметить, что потенциальная энергия системы может иметь отрицательное значение. Предположим, мы уже подняли тело над уровнем Земли, стало быть, оно имеет высоту, которую назовем начальной. При его опускании формула будет выглядеть таким образом:

Очевидно, что h1 больше h2, следовательно, значение будет отрицательным, что и придаст всей формуле знак минус.

Любопытно, что потенциальная энергия тем выше, чем дальше от поверхности Земли расположено тело. Для того чтобы лучше понять этот факт, задумаемся: чем выше нужно поднять тело над Землей, тем основательнее совершенная работа. Чем выше значение работы любой силы, тем, условно говоря, больше вложено энергии. Потенциальная энергия, иначе говоря, - это энергия возможности.

Подобным образом можно измерить энергию взаимодействия тел при растяжении предмета.

В рамках рассматриваемой темы необходимо отдельно обсудить взаимодействие заряженной частицы и электрического поля. В подобной системе будет наличествовать потенциальная энергия заряда. Рассмотрим этот факт подробнее. На любой заряд, находящийся в пределах электрического поля, действует одноименная сила. Перемещение частицы происходит за счет работы, производимой этой силой. Учитывая, что собственно заряд и (точнее говоря, тело, его создавшее) - это система, мы также получаем потенциальную энергию перемещения заряда в рамках заданного поля. Поскольку данный вид энергии - особый случай, ему было присвоено название электростатического.

Потенциальная энергия это энергия взаимодействия тел, либо частей тела, между собой. В потенциальном поле консервативных сил. Она зависит от расстояния, на котором находятся тела, и не зависит от их скорости. Таким образом, потенциальная энергия это скалярная величина, имеющая числовое значение, но не имеющая вектора направления. Также она способна совершать работу под действием сил поля.

Примером потенциальной энергии можно считать, такую энергию которой обладает тело массой m подвешенное на некотором расстоянии от земли. В данном случае взаимодействуют два тела. Это земля и подвешенный груз. Роль потенциального поля сил играет гравитационное поле земли. Консервативная сила в данном случае это сила тяжести. Расстоянием между телами считается расстояние между грузом и поверхностью земли.

Рисунок 1 - Потенциальная энергия.


Напомним что консервативная сила это такая сила, для которой работа, совершаемая по замкнутому контуру равна нулю. Или так, работа зависит только от начального и конечного положения тела и не зависит от формы пути, по которому оно движется.

Абсолютное значение потенциальной энергии нигде не используется. Для расчетов важно знать разность энергий в двух точках. К примеру с грузом и землей. Строго говоря, для расчета гравитационных сил необходимо брать расстояние от цента земли к центру груза. Но величина потенциальной энергии в толще земли и середине груза никого не интересует.

Мы хотим знать, какой энергией обладает тело на пути от верхней точки до поверхности земли. Так как дальше поверхности тело двигаться не будет хотя при этом абсолютное значение потенциальной энергии не равна нулю. Но для упрощения расчетов в эксперименте, который ограничен рамками, поверхность земли и верхнее положение груза, мы принимаем нулевым положением потенциальной энергии положение тела на земле.

Формула 1 - Потенциальная энергия взаимодействия тел.

m - Масса тела.

g - Ускорение свободного падения.

h - Высота.

Еще одним примером консервативной силы можно считать силу упругой деформации. Скажем, к примеру, если взять пружину, на конце которой закреплен груз.


Рисунок 2 - Сила упругой деформации.


В начальном состоянии, когда пружине не растянута и не сжата груз обладает нулевой потенциальной энергией. Если пружину сжать, то есть изменить положение тела. То груз приобретет некоторую энергию. Далее при отпускании потенциальная энергия перейдет в силу движения и вернет груз в начальное положение.

Формула 3 - Потенциальная энергия упругой деформации.

k - коэффициент упругости.

l - изменение длинны.

Если в случае подвешенного груза на высоте роль консервативных сил выполняла сила тяжести, то есть гравитационная сила. То в случае пружины это сила упругой деформации тела, то есть электрические силы притяжения между атомами кристаллической решетки.

25.12.2014

Урок 32 (10 класс)

Тема. Потенциальная энергия

1. Работа силы тяжести

Вычислим работу, используя в этот раз не второй закон Ньютона, а явное выражение для сил взаимодействия между телами в зависимости от расстояний между ними. Это позволит нам ввести понятие потенциальной энергии - энергии, зависящей не от скоростей тел, а от расстояний между телами (или от расстояний между частями одного и того же тела).
Вычислим сначала работу силы тяжести при падении тела (например, камня) вертикально вниз. В начальный момент времени тело находилось на высотеh 1 над поверхностью Земли, а в конечный момент времени - на высотеh 2 (рис.6.5 ). Модуль перемещения тела .

Направления векторов силы тяжести и перемещения совпадают. Согласно определению работы (см. формулу (6.2)) имеем

Пусть теперь тело бросили вертикально вверх из точки, расположенной на высоте h 1 , над поверхностью Земли, и оно достигло высоты h 2 (рис.6.6 ). Векторы и направлены в противоположные стороны, а модуль перемещения . Работу силы тяжести запишем так:

Если же тело перемещается по прямой так, что направление перемещения составляет угол с направлением силы тяжести (рис.6.7 ), то работа силы тяжести равна:

Из прямоугольного треугольника BCD видно, что . Следовательно,

Формулы (6.12), (6.13), (6.14) дают возможность подметить важную закономерность. При прямолинейном движении тела работа силы тяжести в каждом случае равна разности двух значений величины, зависящей от положений тела в начальный и конечный моменты времени. Эти положения определяются высотами h 1 и h 2 тела над поверхностью Земли.
Более того, работа силы тяжести при перемещении тела массой m из одного положения в другое не зависит от формы траектории, по которой движется тело. Действительно, если тело перемещается вдоль кривой ВС (рис.6.8 ), то, представив эту кривую в виде ступенчатой линии, состоящей из вертикальных и горизонтальных участков малой длины, увидим, что на горизонтальных участках работа силы тяжести равна нулю, так как сила перпендикулярна перемещению, а сумма работ на вертикальных участках равна работе, которую совершила бы сила тяжести при перемещении тела по вертикальному отрезку длиной h 1 -h 2 .

Таким образом, работа при перемещении вдоль кривой ВС равна:

При движении тела по замкнутой траектории работа силы тяжести равна нулю. В самом деле, пусть тело движется по замкнутому контуру ВСDМВ (рис.6.9 ). На участках ВС и сила тяжести совершает работы, равные по абсолютной величине, но противоположные по знаку. Сумма этих работ равна нулю. Следовательно, равна нулю и работа силы тяжести на всем замкнутом контуре.

Силы, обладающие такими свойствами, называют консервативными .
Итак, работа силы тяжести не зависит от формы траектории тела; она определяется лишь начальным и конечным положениями тела. При перемещении тела по замкнутой траектории работа силы тяжести равна нулю.

2. Работа силы упругости

Подобно силе тяжести, сила упругости тоже является консервативной. Чтобы убедиться в этом, вычислим работу, которую совершает пружина при перемещении груза.
На рисунке 6.10, а показана пружина, у которой один конец закреплен неподвижно, а к другому концу прикреплен шар. Если пружина растянута, то она действует на шар с силой (рис.6.10,б ), направленной к положению равновесия шара, в котором пружина не деформирована. Начальное удлинение пружины равно . Вычислим работу силы упругости при перемещении шара из точки с координатой x 1 в точку с координатой x 2 . Из рисунка 6.10, в видно, что модуль перемещения равен:

где - конечное удлинение пружины.

Вычислить работу силы упругости по формуле (6.2) нельзя, так как эта формула справедлива лишь для постоянной силы, а сила упругости при изменении деформации пружины не остается постоянной. Для вычисления работы силы упругости воспользуемся графиком зависимости модуля силы упругости от координаты шара (рис.6.11 ).

При постоянном значении проекции силы на перемещение точки приложения силы ее работа может быть определена по графику зависимости F x от x и что эта работа численно равна площади прямоугольника. При произвольной зависимости F x от x , разбивая перемещение на малые отрезки, в пределах каждого из которых силу можно считать постоянной, увидим, что работа будет численно равна площади трапеции.
В нашем примере работа силы упругости на перемещении точки ее приложения численно равна площади трапеции ВCDM . Следовательно,

Согласно закону Гука и . Подставляя эти выражения для сил в уравнение (6.17) и учитывая, что , получим

Или окончательно

Мы рассмотрели случай, когда направления силы упругости и перемещения тела совпадали: . Но можно было бы найти работу силы упругости, когда ее направление противоположно перемещению тела или составляет с ним произвольный угол, а также при перемещении тела вдоль кривой произвольной формы.
Во всех этих случаях движения тела под действием силы упругости мы пришли бы к той же формуле для работы (6.18). Работа сил упругости зависит лишь от деформаций пружины и в начальном и конечном состояниях.
Таким образом, работа силы упругости не зависит от формы траектории и, так же как и сила тяжести, сила упругости является консервативной.

3. Потенциальная энергия

Используя второй закон Ньютона, что в случае движущегося тела работа сил любой природы может быть представлена в виде разности двух значений некоторой величины, зависящей от скорости тела, - разности между значениями кинетической энергии тела в конечный и начальный моменты времени:

Если же силы взаимодействия между телами являются консервативными, то, используя явные выражения для сил, мы показали, что работу таких сил можно также представить в виде разности двух значений некоторой величины, зависящей от взаимного расположения тел (или частей одного тела):

Здесь высоты h 1 иh 2 определяют взаимное расположение тела и Земли, а удлинения и - взаимное расположение витков деформированной пружины (или значения деформаций другого упругого тела).
Величину, равную произведению массы тела m на ускорение свободного падения g и на высоту h тела над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли (от латинского слова «потенция» - положение, возможность).
Условимся обозначать потенциальную энергию буквой Е п :

Величину, равную половине произведения коэффициента упругости k тела на квадрат деформации , называют потенциальной энергией упруго деформированного тела :

В обоих случаях потенциальная энергия определяется расположением тел системы или частей одного тела относительно друг друга.
Введя понятие потенциальной энергии, мы получаем возможность выразить работу любых консервативных сил через изменение потенциальной энергии. Под изменением величины понимают разность между ее конечным и начальным значениями, поэтому .
Следовательно, оба уравнения (6.20) можно записать так:

откуда .
Изменение потенциальной энергии тела равно работе консервативной силы, взятой с обратным знаком.
Эта формула позволяет дать общее определение потенциальной энергии.
Потенциальной энергией системы называется зависящая от положения тел величина, изменение которой при переходе системы из начального состояния в конечное равно работе внутренних консервативных сил системы, взятой с противоположным знаком.
Знак «-» в формуле (6.23) не означает, что работа консервативных сил всегда отрицательна. Он означает лишь, что изменение потенциальной энергии и работа сил в системе всегда имеют противоположные знаки.
Например, при падении камня на Землю его потенциальная энергия убывает , но сила тяжести совершает положительную работу (A >0). Следовательно, A и имеют противоположные знаки в соответствии с формулой (6.23).
Нулевой уровень потенциальной энергии. Согласно уравнению (6.23) работа консервативных сил взаимодействия определяет не саму потенциальную энергию, а ее изменение.
Поскольку работа определяет лишь изменение потенциальной энергии, то только изменение энергии в механике имеет физический смысл. Поэтому можно произвольно выбрать состояние системы, в котором ее потенциальная энергия считается равной нулю. Этому состоянию соответствует нулевой уровень потенциальной энергии. Ни одно явление в природе или технике не определяется значением самой потенциальной энергии. Важна лишь разность значений потенциальной энергии в конечном и начальном состояниях системы тел.
Выбор нулевого уровня производится по-разному и диктуется исключительно соображениями удобства, т. е. простотой записи уравнения, выражающего закон сохранения энергии.
Обычно в качестве состояния с нулевой потенциальной энергией выбирают состояние системы с минимальной энергией. Тогда потенциальная энергия всегда положительна или равна нулю.
Итак, потенциальная энергия системы «тело - Земля» - величина, зависящая от положения тела относительно Земли, равная работе консервативной силы при перемещении тела из точки, где оно находится, в точку, соответствующую нулевому уровню потенциальной энергии системы.
У пружины потенциальная энергия минимальна в отсутствие деформации, а у системы «камень - Земля» - когда камень лежит на поверхности Земли. Поэтому в первом случае , а во втором случае . Но к данным выражениям можно добавить любую постоянную величину C , и это ничего не изменит. Можно считать, что .
Если во втором случае положить , то это будет означать, что за нулевой уровень энергии системы «камень - Земля» принята энергия, соответствующая положению камня на высоте h 0 над поверхностью Земли.
Изолированная система тел стремится к состоянию, в котором ее потенциальная энергия минимальна.
Если не удерживать тело, то оно падает на землю (h =0); если отпустить растянутую или сжатую пружину, то она вернется в недеформированное состояние .
Если силы зависят только от расстояний между телами системы, то работа этих сил не зависит от формы траектории. Поэтому работу можно представить как разность значений некоторой функции, называемой потенциальной энергией, в конечном и начальном состояниях системы. Значение потенциальной энергии системы зависит от характера действующих сил, и для его определения необходимо указать нулевой уровень отсчета.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!