Женский журнал Ladyblue

Формула кинетической энергии со временем. Кинетическая энергия - энергия движения тел

Кинетическая энергия - скалярная физическая величи­на, равная половине произведения массы тела на квадрат его скорости.

Что бы понять, что же такое кинетическая энергия тела, рассмотрим случай, когда тело массой m под действием постоянной силы (F=const) движется прямолинейно равноускоренно (а=const). Определим работу силы, приложенной к телу, при изменении модуля скорости этого тела от v1 до v2.

Как мы знаем, работа постоянной силы вычисляют по формуле . Так как в рассматриваемом нами случае направление силы F и перемещения s совпадают, то , и тогда у нас получается, что работа силы равна А=Fs. По второму закону Ньютона найдем силу F=ma. Для прямолинейного равноускоренного движения справедлива формула:

Из это формулы мы выражаем перемещение тела:

Подставляем найденные значения F и S в формулу работы, и получаем:

Из последней формулы видно, что работа силы, приложенной к телу, при изменении скорости этого тела равна разности двух значений некоторой величины . А механическая работа это и есть мера изменения энергии. Следовательно, в правой части формулы стоит разность двух значений энергии данного тела. Это значит, что величина представляет собой энергию, обусловленную движением тела. Эту энергию называют кинетической. Она обозначается Wк.

Если взять выведенную нами формулу работы, то у нас получится

Работа, совершаемая силой при изменении скорости тела, равна изменению кинетической энергии этого тела

Так же есть:

Потенциальная энергия:

В формуле мы использовали:

Кинетическая энергия

Масса тела

Скорость движения тела

Для решения задач при помощи теоремы об изменении кинетической энергии требуется умение вычислять кинетическую энергию и работу сил. Вычисление работы рассмотрено в предыдущих пунктах. Здесь рассмотрим вычисление кинетической энергии.

В общем случае кинетическая энергия системы вычисляется по формуле

Если система состоит из нескольких твердых тел, то кинетическая энергия будет равна сумме кинетических энергий отдельных тел: .

Рассмотрим, как вычисляется кинетическая энергия тела в различных случаях движения. При этом будем исходить из общей формулы для кинетической энергии системы, в которой под будем понимать теперь массы и скорости малых частиц тела, на которые мысленно разбивается движущееся тело.

При поступательном движении скорости всех точек тела геометрически равны: для вычисления кинетической энергии получаем формулу

(скалярный квадрат вектора равен квадрату его модуля), то в конечном результате содержится модуль v скорости v тела.

Таким образом, кинетическая энергия твердого тела при поступательном движении определяется так же, как для материальной точки с массой и скоростью, равными массе и скорости тела:

При вращательном движении (рис. 52) будем иметь.

Получено правило: кинетическая энергия тела при его вращении вокруг неподвижной оси равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости.

При сложном движении тела кинетическую энергию вычисляют при помощи следующей теоремы (теоремы кинетическая энергия механической системы равна кинетической энергии ее центра масс в предположении, что в нем сосредоточена масса всей системы, плюс кинетическая энергия системы в ее относительном движении по отношению к осям Кёнига.

Докажем эту теорему. Пусть скорости материальных точек системы относительно неподвижной системы координат Oxyz равны соответственно . Введем вспомогательную систему координат С началом в центре масс системы С и осями, движущимися поступательно вместе с центром масс (рис. 53; на рисунке оси выбраны соответственно параллельными осям ). Как и для твердого тела (см. с. 56 и рис. 32) эти вспомогательные оси называются осями Кёнига. Теперь движение каждой точки системы можно рассматривать как движение сложное, в котором переносным является движение осей Кёнига, а относительным - движение точки по отношению к осям Кёнига. Для скоростей , являющихся абсолютными скоростями, на основании теоремы сложения скоростей можем записать:

Здесь учтено, что при переносном поступательном движении переносные скорости всех точек одинаковы и равны скорости начала по-движной системы координат (в данном случае - скорости центра масс). Подставляя это выражение в формулу для кинетической энергии системы, получаем:

В этой формуле - кинетическая энергия системы в относительном движении по отношению к осям Кёнига; - относительная скорость центра масс по отношению к этим же осям. В силу выбора подвижных осей и из полученного равенства следует - момент инерции тела относительно оси Кёнига, перпендикулярной плоскости движения. После подстановки этого значения в формулу Кёнига, получаем

По этой формуле и следует вычислять кинетическую энергию тела при плоскопараллельном движении.

Кинетической энергией системы называется скалярная величина Т, равная сумме кинетических энергий всех точек системы.

Кинетическая энергия является характеристикой и поступательного, и вращательного движений системы. Главное отличие величины Т от введенных ранее характеристик Q и Ко состоит в том, что кинетическая энергия является величиной скалярной и притом существенно положительной. Поэтому она не зависит от направлений движения частей системы и не характеризует изменений этих направлений.

Отметим еще следующее важное обстоятельство. Внутренние силы действуют на части системы по взаимно противоположным направлениям. По этой причине они, как мы видели, не изменяют векторных характеристик . Но если под действием внутренних сил будут изменяться модули скоростей точек системы, то при этом будет изменяться и величина Т.

Следовательно, кинетическая энергия системы отличается от величин и тем, что на ее изменение влияет действие и внешних, и внутренних сил.

Если система состоит из нескольких тел, то ее кинетическая энергия равна сумме кинетических энергий этих тел.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение. В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости центра масс. Следовательно, для любой точки и формула (41) дает

Таким образом, кинетическая энергия тела при поступательном движении равна половине произведения массы тела на квадрат скорости центра масс.

2. Вращательное движение. Если тело вращается вокруг какой-нибудь оси (см. рис. 295), то скорость любой его точки где - расстояние точки от оси вращения, а - угловая скорость тела. Подставляя это значение в формулу (41) и вынося общие множители за скобки, получим

Величина, стоящая в скобках, представляет собой момент инерции тела относительно оси . Таким образом, окончательно найдем

т. е. кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

3. Плоскопараллельное движение. При этом движении скорости всех точек тела в каждый момент времени распределены так, как если бы тело вращалось вокруг оси, перпендикулярной плоскости движения и проходящей через мгновенный центр скоростей Р (рис. 303). Следовательно, по формуле (43)

где - момент инерции тела относительно названной выше оси; - угловая скорость тела.

Величина в формуле (43) будет переменной, так как положение центра Р при движении тела все время меняется. Введем вместо постоянный момент инерции относительно оси, проходящей через центр масс С тела. По теореме Гюйгенса (см. § 103) , где . Подставим это выражение для в (43).

Учитывая, что точка Р - мгновенный центр скоростей и, следовательно, , где - скорость центра масс С, окончательно найдем

Следовательно, при плоскопараллельном движении кинетическая энергия тела равна энергии поступательного движения со скоростью центра масс, сложенной с кинетической энергией вращательного движения вокруг центра масс.

4. Общий случай движения. Если выбрать центр масс С тела в качестве полюса (рис. 304), то движение тела в общем случае будет слагаться из поступательного со скоростью полюса и вращательного вокруг мгновенной оси СР, проходящей через этот полюс (см. § 63). При этом, как показано в § 63, скорость любой точки тела слагается из скорости полюса и скорости, которую точка получает при вращении тела вокруг полюса (вокруг оси СР) и которую мы обозначим При этом по модулю где - расстояние точки от оси СР, а - угловая скорость тела, которая (см. § 63) не зависит от выбора полюса. Тогда

Подставляя это значение в равенство (41) и учитывая, что найдем

где общие множители сразу вынесены за скобки.

В полученном равенстве первая скобка дает массу М тела, а вторая равна моменту инерции тела относительно мгновенной оси СР.

Величина же , так как она представляет собой количество движения, получаемое телом при его вращении вокруг оси СР, проходящей через центр масс тела (см. § 110).

В результате окончательно получим

Таким образом, кинетическая энергия тела в общем случае движения (в частности, и при плоскопараллельном движении) равна кинетической энергии поступательного движения со скоростью центра масс, сложенной с кинетической энергией вращательного движения вокруг оси, проходящей через центр масс.

Если за полюс взять не центр масс С, а какую-нибудь другую точку А тела и мгновенная ось АР при этом не будет все время проходить через центр масс, то для этой оси и формулы вида (45) мы не получим.

Рассмотрим примеры.

Задача 136. Вычислить кинетическую энергию катящегося без скольжения сплошного цилиндрического колеса массой М, если скорость его центра равна (см. рис. 308, а).

Решение Колесо совершает плоскопараллелыюе движение. По формуле (44) или (45)

Считаем колесо сплошным однородным цилиндром; тогда (см. § 102) , где R - радиус колеса. С другой стороны, так как точка В является для колеса мгновенным центром скоростей, то откуда Подставляя все эти значения, найдем

Задача 137. В детали А, движущейся поступательно со скоростью имеются направляющие, по которым со скоростью v перемещается тело В массой . Зная угол а (рис. 305), определить кинетическую энергию тела В.

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h. Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh, или Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h - высота тела над поверхностью земли,
g ускорение свободного падения.

Причем за нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий проводимых опыта и измерений, не только поверхность Земли. Это может быть поверхность пола, стола и так далее.

Кинетическая энергия

В случае, когда тело движется под влиянием силы, оно уже не только может, но и совершает какую-то работу. В физике кинетической энергией называется энергия, которой обладает тело вследствие своего движения. Тело, двигаясь, расходует свою энергию и совершает работу. Для кинетической энергии формула рассчитывается следующей образом:

A = Fs = mas = m * v / t * vt / 2 = (mv^2) / 2 , или Eк= (mv^2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия.

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.

А4. Какие изменения отмечает человек в звуке при увеличении частоты колебаний в звуковой волне?
1) Повышение высоты тона
2) Понижение высоты тона
3) Увеличение громкости
4) Уменьшение громкости

А5. Расстояния от двух когерентных источников волн до точки М равны а и b. Разность фаз колебаний источников равна нулю, длина волны равна l. Если излучает только один источник волн, то амплитуда колебаний частиц среды в точке М равна А1, если только второй, то – А2. Если разность хода волн a – b =3l/2 , то в точке М амплитуда суммарного колебания частиц среды
1) равна нулю 2) равна | А1 – А2| 3) равна | А1 + А2|
4) меняется со временем периодически

А6. Выберите правильное утверждение.
А. Опираясь на эксперименты Фарадея по исследованию электромагнитной индукции, Максвелл теоретически предсказал существование электромагнитных волн.
В. Опираясь на теоретические предсказания Максвелла, Герц обнаружил электромагнитные волны экспериментально.
С. Опираясь на эксперименты Герца по исследованию электромагнитных волн, Максвелл создал теорию их распространения в вакууме.
1) Только А и В 2) Только А и С 3) Только В и С 4) И А, и В, и С

А7. Какое утверждение верно?
В теории электромагнитного поля Максвелла
А – переменное электрическое поле порождает вихревое магнитное поле
Б – переменное магнитное поле порождает вихревое электрическое поле

А8. В одной научной лаборатории для ускорения заряженных частиц используется линейный ускоритель, а во второй – циклотрон, в котором частицы разгоняются, двигаясь по спиралевидной траектории. В какой из лабораторий следует учесть возможность возникновения опасных для человека электромагнитных излучений.
1) Только в первой 2) Только во второй 3) В обеих лабораториях
4) Ни в одной из лабораторий

А9. Какое утверждение правильное?
Излучение электромагнитных волн происходит при
А – движении электрона в линейном ускорителе
Б – колебательном движении электронов в антенне
1) Только А 2) Только Б 3) И А, и Б 4) Ни А, ни Б

А10. Заряженная частица не излучает электромагнитные волны в вакууме
1) равномерном прямолинейном движении
2) равномерном движении по окружности
3) колебательном движении
4) любом движении с ускорением

А11. Скорость распространения электромагнитных волн
1) имеет максимальное значение в вакууме
2) имеет максимальное значение в диэлектриках
3) имеет максимальное значение в металлах
4) одинакова в любых средах

А12. В первых экспериментах по изучению распространения электромагнитных волн в воздухе были измерены длина волны см и частота излучения МГц. На основе этих неточных экспериментов было получено значение скорости света в воздухе, равное примерно
1) 100000 км/с 2) 200000 км/с 3) 250000 км/с 4) 300000 км/с

А13. Колебания электрического поля в электромагнитной волне описываются уравнением: Е=10sin(107t). Определите частоту колебаний (в Гц).
1) 107 2) 1,6 *106 3)(107 t) 4) 10

А14. При распространении электромагнитной волны в вакууме
1) происходит только перенос энергии
2) происходит только перенос импульса
3) происходит перенос и энергии, и импульса
4) не происходит переноса ни энергии, ни импульса

А15. При прохождении электромагнитной волны в воздухе происходят колебания
1) молекул воздуха
2) плотности воздуха
3) напряжённости электрического и индукции магнитного полей
4) концентрации кислорода

А16. Явлением, доказывающим, что в электромагнитной волне вектор напряжённости электрического поля колеблется в направлении, перпендикулярном направлению распространению электромагнитной волны, является
1) интерференция 2) отражение 3) поляризация 4) дифракция

А17. Укажите сочетание тех параметров электромагнитной волны, которые изменяются при переходе волны из воздуха в стекло
1) скорость и длина волны 2) частота и скорость
3) длина волны и частота 4) амплитуда и частота

А18. Какое явление характерно для электромагнитных волн, но не является общим свойством волн любой природы?
1) интерференция 2) преломление 3) поляризация 4) дифракция

А19. На какую длину волны нужно настроить радиоприемник, чтобы слушать радиостанцию «Европа+», которая вещает на частоте 106,2 МГц?
1) 2,825 дм 2) 2,825 см 3) 2,825 км 4) 2,825 м

А20. Амплитудная модуляция высокочастотных электромагнитных колебаний в радиопередатчике используется для
1) увеличения мощности радиостанции
2) изменения амплитуды высокочастотных колебаний
3) изменения амплитуды колебаний звуковой частоты
4) задания определенной частоты излучения данной радиостанции

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!